/**
* @file src/indexing/ImageProcessor.ts
* @description Image processing utilities for vision-language models
*
* Handles:
* - Automatic image resizing to fit within VL model limits
* - Aspect ratio preservation
* - Base64 encoding for API transmission
*/
import sharp from 'sharp';
import * as path from 'path';
export interface ProcessedImage {
buffer: Buffer;
base64: string;
wasResized: boolean;
originalSize: { width: number; height: number };
processedSize: { width: number; height: number };
format: string;
sizeBytes: number;
}
export interface ImageProcessorConfig {
maxPixels: number; // Maximum total pixels (e.g., 3211264 for ~1792×1792)
targetSize: number; // Target dimension for largest side
resizeQuality: number; // JPEG quality (1-100)
}
export class ImageProcessor {
private config: ImageProcessorConfig;
constructor(config: ImageProcessorConfig) {
this.config = config;
}
/**
* Check if a file is a supported image format
*
* @param filePath - Path to file to check
* @returns true if file extension is a supported image format
*
* @example
* if (ImageProcessor.isImageFile('/path/to/photo.jpg')) {
* console.log('Image file detected');
* }
*
* @example
* const files = await readdir('/images');
* const images = files.filter(f => ImageProcessor.isImageFile(f));
* console.log('Found', images.length, 'images');
*/
static isImageFile(filePath: string): boolean {
const ext = path.extname(filePath).toLowerCase();
return ['.jpg', '.jpeg', '.png', '.webp', '.gif', '.bmp', '.tiff'].includes(ext);
}
/**
* Prepare an image for vision-language model processing
*
* Automatically resizes large images to fit within VL model limits while
* preserving aspect ratio. Converts to Base64 for API transmission.
*
* @param imagePath - Absolute path to image file
* @returns Processed image with metadata and Base64 encoding
* @throws {Error} If image cannot be read or processed
*
* @example
* const processor = new ImageProcessor({
* maxPixels: 3211264,
* targetSize: 1792,
* resizeQuality: 85
* });
*
* const result = await processor.prepareImageForVL('/path/to/large-image.jpg');
* if (result.wasResized) {
* console.log('Resized from', result.originalSize, 'to', result.processedSize);
* }
* console.log('Base64 size:', result.base64.length, 'chars');
*
* @example
* // Process image for VL API
* const processed = await processor.prepareImageForVL(imagePath);
* const dataURL = processor.createDataURL(processed.base64, processed.format);
* await vlModel.describeImage(dataURL);
*/
async prepareImageForVL(imagePath: string): Promise<ProcessedImage> {
// Read image and get metadata
const image = sharp(imagePath);
const metadata = await image.metadata();
if (!metadata.width || !metadata.height) {
throw new Error(`Unable to read image dimensions: ${imagePath}`);
}
const currentPixels = metadata.width * metadata.height;
const originalSize = { width: metadata.width, height: metadata.height };
let processedBuffer: Buffer;
let processedSize = originalSize;
let wasResized = false;
// Check if resize is needed
if (currentPixels > this.config.maxPixels) {
const result = await this.resizeImage(image, metadata);
processedBuffer = result.buffer;
processedSize = result.size;
wasResized = true;
} else {
// No resize needed, just convert to buffer
processedBuffer = await image.toBuffer();
}
// Convert to Base64
const base64 = processedBuffer.toString('base64');
return {
buffer: processedBuffer,
base64,
wasResized,
originalSize,
processedSize,
format: metadata.format || 'unknown',
sizeBytes: processedBuffer.length
};
}
/**
* Resize image to fit within maxPixels while preserving aspect ratio
*/
private async resizeImage(
image: sharp.Sharp,
metadata: sharp.Metadata
): Promise<{ buffer: Buffer; size: { width: number; height: number } }> {
const { width, height } = metadata;
if (!width || !height) {
throw new Error('Invalid image dimensions');
}
// Calculate scale factor to fit within maxPixels
const currentPixels = width * height;
const scale = Math.sqrt(this.config.maxPixels / currentPixels);
// Calculate new dimensions
let newWidth = Math.floor(width * scale);
let newHeight = Math.floor(height * scale);
// Alternative: Use targetSize for largest dimension (more conservative)
const aspectRatio = width / height;
if (aspectRatio > 1) {
// Landscape
newWidth = Math.min(newWidth, this.config.targetSize);
newHeight = Math.floor(newWidth / aspectRatio);
} else {
// Portrait or square
newHeight = Math.min(newHeight, this.config.targetSize);
newWidth = Math.floor(newHeight * aspectRatio);
}
// Perform resize
const buffer = await image
.resize(newWidth, newHeight, {
fit: 'inside',
withoutEnlargement: true
})
.jpeg({ quality: this.config.resizeQuality })
.toBuffer();
return {
buffer,
size: { width: newWidth, height: newHeight }
};
}
/**
* Create a Data URL for image (for API transmission)
*
* Formats Base64 image data as a data URL with proper MIME type.
* Used for sending images to vision-language APIs.
*
* @param base64 - Base64-encoded image data
* @param format - Image format (jpeg, png, webp, etc.)
* @returns Data URL string ready for API transmission
*
* @example
* const processed = await processor.prepareImageForVL(imagePath);
* const dataURL = processor.createDataURL(processed.base64, processed.format);
* console.log('Data URL:', dataURL.substring(0, 50) + '...');
* // Output: ...
*
* @example
* // Send to VL API
* const dataURL = processor.createDataURL(base64, 'png');
* const response = await fetch('https://api.vl-model.com/describe', {
* method: 'POST',
* body: JSON.stringify({ image: dataURL })
* });
*/
createDataURL(base64: string, format: string): string {
const mimeType = this.getMimeType(format);
return `data:${mimeType};base64,${base64}`;
}
/**
* Get MIME type from image format
*/
private getMimeType(format: string): string {
const mimeTypes: Record<string, string> = {
'jpeg': 'image/jpeg',
'jpg': 'image/jpeg',
'png': 'image/png',
'webp': 'image/webp',
'gif': 'image/gif',
'bmp': 'image/bmp',
'tiff': 'image/tiff'
};
return mimeTypes[format.toLowerCase()] || 'image/jpeg';
}
}