Skip to main content
Glama
orneryd

M.I.M.I.R - Multi-agent Intelligent Memory & Insight Repository

by orneryd
doc.go1.24 kB
// Package cuda provides NVIDIA GPU acceleration for vector operations using CUDA. // // This package requires: // - NVIDIA GPU with CUDA Compute Capability 3.5+ // - CUDA Toolkit 11.0+ installed // - cuBLAS library available // // The package provides GPU-accelerated: // - Vector normalization // - Cosine similarity computation // - Top-K selection // // Build Requirements: // // On Linux: // - Install CUDA Toolkit: https://developer.nvidia.com/cuda-downloads // - Set environment: export CUDA_HOME=/usr/local/cuda // - Ensure libcublas.so is in LD_LIBRARY_PATH // // On Windows: // - Install CUDA Toolkit from NVIDIA // - Visual Studio with C++ build tools // - CUDA_PATH environment variable set // // Build tags: // - Build with: go build -tags cuda // - Without CUDA: builds with stub implementations // // Example usage: // // if cuda.IsAvailable() { // device, err := cuda.NewDevice(0) // if err != nil { // log.Fatal(err) // } // defer device.Release() // // // Create buffer with embeddings // buf, _ := device.NewBuffer(embeddings, cuda.MemoryDevice) // // // Perform similarity search // results, _ := device.Search(buf, query, n, dims, k) // } package cuda

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/orneryd/Mimir'

If you have feedback or need assistance with the MCP directory API, please join our Discord server