Skip to main content
Glama
orneryd

M.I.M.I.R - Multi-agent Intelligent Memory & Insight Repository

by orneryd
README.md3.4 kB
# llama.cpp Static Libraries This directory contains static libraries and headers for llama.cpp, used by NornicDB's local embedding provider. ## Directory Structure ``` lib/llama/ ├── llama.h # Main llama.cpp header ├── ggml.h # GGML tensor library header ├── ggml-*.h # Additional GGML headers ├── libllama_darwin_arm64.a # macOS Apple Silicon (with Metal) ├── libllama_darwin_amd64.a # macOS Intel ├── libllama_linux_amd64.a # Linux x86_64 (CPU only) ├── libllama_linux_amd64_cuda.a # Linux x86_64 (with CUDA) ├── libllama_linux_arm64.a # Linux ARM64 ├── libllama_windows_amd64.a # Windows x86_64 (with CUDA) ├── libllama_windows_amd64.lib # Windows x86_64 (MSVC format) ├── VERSION # llama.cpp version used └── README.md # This file ``` ## Building from Source ### Linux/macOS Run the build script from the nornicdb directory: ```bash # Build for current platform ./scripts/build-llama.sh # Build specific version ./scripts/build-llama.sh b4600 ``` ### Windows with CUDA Run the PowerShell build script: ```powershell # Build with CUDA support .\scripts\build-llama-cuda.ps1 # Build specific version .\scripts\build-llama-cuda.ps1 -Version b4600 # Clean build .\scripts\build-llama-cuda.ps1 -Clean ``` ### Requirements **All platforms:** - CMake 3.14+ - Git **Linux/macOS:** - C/C++ compiler (gcc, clang) **Windows:** - Visual Studio 2022 with C++ Desktop development - CUDA Toolkit 12.x (for GPU acceleration) - Ninja (optional, for faster builds) ### GPU Support The script auto-detects GPU capabilities: | Platform | GPU Backend | Detection | |----------|-------------|-----------| | macOS Apple Silicon | Metal | Automatic | | Linux + NVIDIA | CUDA | Requires nvcc in PATH | | Windows + NVIDIA | CUDA | Requires CUDA Toolkit | | All platforms | CPU | Always available (AVX2/NEON) | ## Pre-built Libraries For CI/CD, pre-built libraries can be downloaded from GitHub Releases or built via GitHub Actions. ### GitHub Actions Workflow The workflow at `.github/workflows/build-llama.yml` builds libraries for all platforms: ```bash # Trigger build manually gh workflow run build-llama.yml ``` ## Using with NornicDB 1. Place library files in this directory 2. Configure NornicDB: ```bash NORNICDB_EMBEDDING_PROVIDER=local NORNICDB_EMBEDDING_MODEL=bge-m3 NORNICDB_MODELS_DIR=/data/models ``` 3. Place your `.gguf` model in the models directory: ```bash cp bge-m3.Q4_K_M.gguf /data/models/bge-m3.gguf ``` 4. Build with appropriate tags: ```bash # Linux/macOS go build -tags=localllm ./cmd/nornicdb # Windows with CUDA go build -tags="cuda localllm" ./cmd/nornicdb ``` ## Placeholder Headers The `llama.h` and `ggml.h` files in this directory are placeholders for development. Running the build script will replace them with actual headers from llama.cpp. ## Version Compatibility - llama.cpp version: See `VERSION` file after building - Recommended: b4535 or later (for stable embedding API) ## License - llama.cpp: MIT License - GGML: MIT License - This build configuration: MIT License Model files (`.gguf`) are NOT included and have their own licenses. Users are responsible for complying with model licenses.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/orneryd/Mimir'

If you have feedback or need assistance with the MCP directory API, please join our Discord server