Skip to main content
Glama
orneryd

M.I.M.I.R - Multi-agent Intelligent Memory & Insight Repository

by orneryd
clustering-roadmap.md5.13 kB
# Clustering Architecture & Roadmap > **Current Features + Future Plans** > This document covers current clustering capabilities and planned sharding features. ## Current Capabilities (v1.x) - **Standalone Mode** - Single node, embedded or server - **Hot Standby** - 2-node primary/standby with WAL replication - **Raft Cluster** - 3-5 node strong consistency cluster - **Multi-Region** - Per-region Raft clusters with async cross-region replication ## Deployment Tiers | Tier | Nodes | Capacity | Status | |------|-------|----------|--------| | Embedded | 1 | ~10K nodes | ✅ Available | | Standalone | 1-2 | ~1M nodes | ✅ Available | | Raft Cluster | 3-5 | ~10M nodes | ✅ Available | | Multi-Region | 6+ | ~100M nodes | ✅ Available | | **Sharded** | 10+ | ~10B+ nodes | 🔮 Planned | ## Planned: Horizontal Sharding ### Architecture Vision ``` ┌───────────────────────────────────────────────────────────┐ │ Coordinator Layer │ │ (Query routing, metadata management) │ └─────────────────────────┬─────────────────────────────────┘ │ ┌─────────────────┼─────────────────┐ │ │ │ ▼ ▼ ▼ ┌─────────┐ ┌─────────┐ ┌─────────┐ │ Shard A │ │ Shard B │ │ Shard C │ │ (Raft) │ │ (Raft) │ │ (Raft) │ └─────────┘ └─────────┘ └─────────┘ ``` ### Planned Sharding Strategies - **Label-based** - Co-locate nodes with same labels - **Hash-based** - Consistent hashing for even distribution - **Analytics-driven** - Use k-means/Louvain for intelligent placement ### Planned Features 1. **Query Routing** - Automatic routing to relevant shards 2. **Cross-shard Queries** - Scatter-gather for distributed queries 3. **Vector Index Distribution** - Per-shard HNSW indexes 4. **Live Rebalancing** - Zero-downtime shard migration ## Planned: Heterogeneous Clusters Support for mixed-capability nodes: ``` ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ Raspberry Pi│ │ Desktop PC │ │ GPU Server │ ├─────────────┤ ├─────────────┤ ├─────────────┤ │ ✅ BM25 │ │ ✅ BM25 │ │ ✅ BM25 │ │ ✅ Graph │ │ ✅ Graph │ │ ✅ Graph │ │ ❌ Vector │ │ ✅ Vector │ │ ✅ Vector │ │ ❌ Embed │ │ ⚠️ Embed │ │ ✅ GPU │ └─────────────┘ └─────────────┘ └─────────────┘ ``` - **Capability-based routing** - Route queries to capable nodes - **Workload-based balancing** - Dynamic load distribution - **Data locality** - Keep related data together ## Available: Multi-Region Geographic distribution with async cross-region replication: - ✅ Per-region Raft clusters (strong local consistency) - ✅ Cross-region WAL streaming (async replication) - ✅ Conflict resolution strategies (`last_write_wins`, `manual`) - ✅ Configurable cross-region sync modes (`async`, `semi_sync`) - ✅ Region failover and promotion ### Chaos Testing Extensively tested for real-world network conditions: - **Extreme latency**: 2000-3000ms spikes (cross-region scenarios) - **Packet loss**: Up to 20% packet loss handling - **Data corruption**: Detection and recovery - **Connection drops**: Automatic reconnection - **Byzantine failures**: Malicious data, replay attacks - **Reordering**: Out-of-order packet handling See **[Clustering Guide](../user-guides/clustering.md#mode-3-multi-region)** for setup instructions. ## Implementation Timeline | Phase | Target | Features | |-------|--------|----------| | Phase 1 | ✅ Done | Hot Standby, Raft Cluster | | Phase 2 | ✅ Done | Multi-Region with async replication | | Phase 3 | 2025 H2 | Sharding coordinator | | Phase 4 | 2026 | Full sharding, heterogeneous clusters | ## Technical References - [Cassandra Architecture](https://cassandra.apache.org/doc/latest/cassandra/architecture/) - [Dgraph Sharding](https://dgraph.io/docs/design-concepts/) - [Raft Consensus](https://raft.github.io/) ## See Also - **[Clustering Guide](../user-guides/clustering.md)** - Current clustering features - **[Replication Architecture](replication.md)** - Technical details - **[Scaling](../operations/scaling.md)** - Current scaling options

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/orneryd/Mimir'

If you have feedback or need assistance with the MCP directory API, please join our Discord server