Skip to main content
Glama
orneryd

M.I.M.I.R - Multi-agent Intelligent Memory & Insight Repository

by orneryd
vectorSearch.tools.md2.89 kB
[**mimir v1.0.0**](../README.md) *** [mimir](../README.md) / tools/vectorSearch.tools # tools/vectorSearch.tools ## Functions ### createVectorSearchTools() > **createVectorSearchTools**(`driver`): `object`[] Defined in: src/tools/vectorSearch.tools.ts:11 #### Parameters ##### driver `Driver` #### Returns `object`[] *** ### handleVectorSearchNodes() > **handleVectorSearchNodes**(`params`, `driver`): `Promise`\<`any`\> Defined in: src/tools/vectorSearch.tools.ts:118 Handle vector_search_nodes tool call - Semantic search across all nodes #### Parameters ##### params `any` Search parameters ##### driver `Driver` Neo4j driver instance #### Returns `Promise`\<`any`\> Promise with search results and metadata #### Description Performs semantic search using vector embeddings to find nodes by meaning rather than exact keywords. Automatically falls back to full-text search if embeddings are disabled or no results found. Supports multi-hop graph traversal to discover connected nodes at specified depth. #### Examples ```typescript // Basic semantic search const result = await handleVectorSearchNodes({ query: 'authentication implementation', limit: 10 }, driver); // Returns: { results: [...], total_candidates: 10, search_method: 'vector' } ``` ```typescript // Search specific node types const result = await handleVectorSearchNodes({ query: 'database connection', types: ['file', 'file_chunk'], limit: 20, min_similarity: 0.8 }, driver); ``` ```typescript // Multi-hop search to find connected nodes const result = await handleVectorSearchNodes({ query: 'user authentication', depth: 2, limit: 15 }, driver); // Returns direct matches + connected nodes within 2 hops ``` *** ### handleGetEmbeddingStats() > **handleGetEmbeddingStats**(`params`, `driver`): `Promise`\<`any`\> Defined in: src/tools/vectorSearch.tools.ts:288 Handle get_embedding_stats tool call - Get embedding statistics #### Parameters ##### params `any` No parameters required ##### driver `Driver` Neo4j driver instance #### Returns `Promise`\<`any`\> Promise with embedding statistics #### Description Returns statistics about nodes with vector embeddings, broken down by node type. Useful for monitoring indexing progress and understanding what content is available for semantic search. #### Examples ```typescript // Get embedding statistics const result = await handleGetEmbeddingStats({}, driver); // Returns: { // status: 'success', // embeddings_enabled: true, // total_nodes_with_embeddings: 1523, // breakdown_by_type: { // file_chunk: 1200, // todo: 150, // memory: 100, // file: 73 // } // } ``` ```typescript // Check if embeddings are enabled const stats = await handleGetEmbeddingStats({}, driver); if (stats.embeddings_enabled) { console.log(`${stats.total_nodes_with_embeddings} nodes indexed`); } ```

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/orneryd/Mimir'

If you have feedback or need assistance with the MCP directory API, please join our Discord server