Skip to main content
Glama
orneryd

M.I.M.I.R - Multi-agent Intelligent Memory & Insight Repository

by orneryd
create-agent.md1.86 kB
[**mimir v1.0.0**](../README.md) *** [mimir](../README.md) / orchestrator/create-agent # orchestrator/create-agent ## Functions ### createAgent() > **createAgent**(`roleDescription`, `outputDir`, `model`, `taskExample?`, `isQC?`): `Promise`\<`string`\> Defined in: src/orchestrator/create-agent.ts:98 Create a new agent preamble using the Agentinator system This function orchestrates the agent creation process: 1. Loads the appropriate template (Worker or QC) 2. Initializes the Agentinator agent 3. Generates a customized preamble based on role description 4. Saves the preamble to a hashed filename for caching The generated agent follows strict template structure preservation rules to ensure consistency across all generated agents. #### Parameters ##### roleDescription `string` Natural language description of the agent's role Example: "senior golang developer with cryptography expertise" ##### outputDir `string` = `'generated-agents'` Directory to save generated agent preambles (default: 'generated-agents') ##### model `string` = `...` LLM model to use for generation (default: from MIMIR_DEFAULT_MODEL env) ##### taskExample? `any` Optional task object to provide context for generation ##### isQC? `boolean` = `false` Whether to generate a QC agent (true) or Worker agent (false) #### Returns `Promise`\<`string`\> Path to the generated agent preamble file #### Example ```ts // Create a worker agent const agentPath = await createAgent( 'senior golang developer', 'generated-agents', 'gpt-4.1' ); console.log(`Agent saved to: ${agentPath}`); // Output: Agent saved to: generated-agents/worker-a3f2b8c1.md // Create a QC agent with task context const qcPath = await createAgent( 'security auditor', 'generated-agents', 'gpt-4.1', { id: 't1', title: 'Audit auth system', prompt: '...' }, true ); ```

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/orneryd/Mimir'

If you have feedback or need assistance with the MCP directory API, please join our Discord server