# Art Progress Photo Organization Strategy
**Organizing 100TB of Artwork Progress Photos into Time-Series Art Books**
**Version:** 1.0
**Date:** November 25, 2025
---
## Executive Summary
Strategy for organizing 100 terabytes of unorganized artwork progress photos into chronologically-ordered art books (one per painting). Photos have inconsistent angles, lighting, and naming conventions.
**Estimated Outcome:** 90-95% accuracy with human validation, 1.5-2 months processing time
---
## Technical Stack & References
### Computer Vision & Deep Learning
1. **CLIP (OpenAI)** - Image embeddings, 512-dim
Radford et al., "Learning Transferable Visual Models From Natural Language Supervision" (2021)
https://arxiv.org/abs/2103.00020
2. **DINOv2 (Meta AI)** - Self-supervised features, 768/1024-dim
Oquab et al., "DINOv2: Learning Robust Visual Features without Supervision" (2023)
https://arxiv.org/abs/2304.07193
3. **ResNet-152 (Microsoft)** - 2048-dim embeddings
He et al., "Deep Residual Learning for Image Recognition" (2015)
https://arxiv.org/abs/1512.03385
4. **EfficientNet (Google)** - Efficient scaling
Tan & Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" (2019)
https://arxiv.org/abs/1905.11946
### Feature Detection
5. **SIFT** - Scale-invariant keypoints
Lowe, "Distinctive Image Features from Scale-Invariant Keypoints" (2004)
https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
6. **ORB** - Fast SIFT alternative
Rublee et al., "ORB: An Efficient Alternative to SIFT or SURF" (2011)
https://ieeexplore.ieee.org/document/6126544
7. **Canny Edge Detection** - Optimal edge detector
Canny, "A Computational Approach to Edge Detection" (1986)
https://ieeexplore.ieee.org/document/4767851
### Image Hashing
8. **Perceptual Hashing (pHash)** - DCT-based robust hashing
Zauner, "Implementation and Benchmarking of Perceptual Image Hash Functions" (2010)
http://phash.org/docs/pubs/thesis_zauner.pdf
9. **Average/Difference/Wavelet Hashing**
imagehash library: https://github.com/JohannesBuchner/imagehash
### Clustering Algorithms
10. **HDBSCAN** - Hierarchical density clustering
Campello et al., "Density-Based Clustering Based on Hierarchical Density Estimates" (2013)
https://link.springer.com/chapter/10.1007/978-3-642-37456-2_14
11. **DBSCAN** - Density-based clustering
Ester et al., "A Density-based Algorithm for Discovering Clusters" (1996)
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
12. **K-means** - Color palette extraction
MacQueen, "Some Methods for Classification and Analysis of Multivariate Observations" (1967)
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fifth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992
### Image Quality & Similarity
13. **SSIM** - Structural similarity index
Wang et al., "Image Quality Assessment: From Error Visibility to Structural Similarity" (2004)
https://ieeexplore.ieee.org/document/1284395
### Color Spaces
14. **LAB Color Space** - Perceptually uniform
CIE 1976 L*a*b* color space standard
https://en.wikipedia.org/wiki/CIELAB_color_space
15. **HSV Color Space** - Hue-Saturation-Value
Smith, "Color Gamut Transform Pairs" (1978)
https://dl.acm.org/doi/10.1145/800248.807361
### Machine Learning
16. **Active Learning** - Human-in-the-loop improvement
Settles, "Active Learning Literature Survey" (2009)
https://minds.wisconsin.edu/handle/1793/60660
17. **U-Net** - Semantic segmentation (paint layer detection)
Ronneberger et al., "U-Net: Convolutional Networks for Biomedical Image Segmentation" (2015)
https://arxiv.org/abs/1505.04597
18. **Bradley-Terry Model** - Pairwise comparisons
Bradley & Terry, "Rank Analysis of Incomplete Block Designs" (1952)
https://www.jstor.org/stable/2334029
### Standards & Formats
19. **EXIF Standard** - Image metadata
JEITA CP-3451 (Japan Electronics and Information Technology Industries Association)
https://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf
### Libraries & Tools
20. **PyTorch** - Deep learning framework
https://pytorch.org/
21. **OpenCV** - Computer vision library
https://opencv.org/
22. **scikit-learn** - Machine learning
https://scikit-learn.org/
23. **scikit-image** - Image processing
https://scikit-image.org/
24. **PIL/Pillow** - Python imaging
https://pillow.readthedocs.io/
25. **Transformers (HuggingFace)** - Pre-trained models
https://huggingface.co/docs/transformers/
26. **FAISS** - Fast similarity search
Johnson et al., "Billion-scale similarity search with GPUs" (2017)
https://arxiv.org/abs/1702.08734
27. **PostgreSQL + pgvector** - Vector database
https://github.com/pgvector/pgvector
28. **Neo4j** - Graph database (relationships)
https://neo4j.com/
29. **Apache Airflow** - Workflow orchestration
https://airflow.apache.org/
30. **Prefect** - Modern workflow engine
https://www.prefect.io/
31. **DVC** - Data version control
https://dvc.org/
---
## Phase 1: Image Analysis & Feature Extraction
### 1.1 Extract Visual Features
- Generate 512-1024 dimensional embeddings using CLIP/DINOv2
- Extract EXIF metadata (timestamps, camera, GPS)
- Compute perceptual hashes (pHash, aHash, dHash, wHash)
- Batch process on GPU clusters (1000-10000 images in parallel)
### 1.2 Extract Painting Signatures
- Detect canvas boundaries (Canny edge detection + contour finding)
- Extract color palettes (K-means in LAB space, 5-10 dominant colors)
- Compute color histograms (HSV space for lighting invariance)
- Extract SIFT/ORB features for angle-invariant matching
- Calculate aspect ratios and canvas sizes
---
## Phase 2: Clustering & Grouping
### 2.1 Multi-Stage Clustering
**Stage 1: Embedding-Based Clustering**
```python
HDBSCAN(
min_cluster_size=5,
min_samples=3,
metric='cosine',
cluster_selection_epsilon=0.3
)
```
**Similarity Thresholds:**
- High confidence: 0.85+ (auto-assign)
- Medium: 0.70-0.85 (batch review)
- Low: 0.60-0.70 (manual review)
- Uncertain: <0.60 (detailed investigation)
**Stage 2: Composition Refinement**
- Verify aspect ratio consistency (variance < 0.1)
- Compare color palettes (LAB distance)
- Match SIFT features across angles (>10 matches = same painting)
- Use SSIM for structural similarity
**Stage 3: Cross-Validation**
- Validate clusters with multiple features
- Split clusters with low internal similarity (<0.5 SSIM)
- Flag overlapping assignments for manual review
### 2.2 Handling Ambiguity
**Confidence Scoring:**
```python
confidence = (
0.5 * cluster_membership_probability +
0.3 * multi_feature_validation_score +
0.2 * sift_match_score
)
```
**Active Learning Loop:**
1. Select most uncertain samples (lowest confidence)
2. Human labeling/validation
3. Incorporate feedback
4. Retrain clustering model
5. Iterate until accuracy plateaus
---
## Phase 3: Temporal Ordering
### 3.1 Multi-Source Timeline Construction
**Primary: EXIF Timestamps**
- Priority: DateTimeOriginal > DateTime > DateTimeDigitized > File creation
- Handle missing timestamps with interpolation
**Secondary: Visual Progression**
```python
completion_score = (
0.5 * canvas_coverage +
0.3 * detail_density +
0.2 * color_saturation
)
```
- Canvas coverage: % painted vs unpainted
- Detail density: Edge detection intensity
- Color saturation: Builds up over layers
**Tertiary: Pairwise Comparison**
- Compare uncertain pairs: "Which shows more progress?"
- Use Bradley-Terry model for ranking
- Bootstrap from confident sequences
### 3.2 Gap Detection
- Identify time gaps >7 days
- Detect style/subject jumps (potential misclassification)
- Flag for review
### 3.3 Temporal Consistency Validation
```python
# Check for "time travel" violations
for i in range(len(sequence) - 1):
if completion[i] > completion[i+1]:
flag_inconsistency(i, i+1)
```
---
## Phase 4: Quality Control
### 4.1 Validation Pipeline
- Verify temporal consistency (no regression in completion)
- Check visual progression (smooth evolution)
- Validate lighting/angle variations reasonable
- Flag outliers (z-score > 3 in any metric)
### 4.2 Duplicate Handling
- Group near-duplicates (pHash distance < 5)
- Keep highest resolution version
- Log all duplicates for reference
### 4.3 Review Queue Priority
1. Low confidence assignments (<0.6)
2. Overlapping cluster candidates
3. Temporal inconsistencies
4. High aspect ratio variance within cluster
5. Low SIFT feature matches
---
## Phase 5: Art Book Generation
### 5.1 Book Structure (Per Painting)
```
├── Cover: Final completed artwork
├── Metadata Page:
│ ├── Date range (first photo to last photo)
│ ├── Estimated time investment
│ ├── Technique notes (if detectable)
│ ├── Canvas dimensions (if available)
├── Progress Grid: 10-20 key milestone photos
├── Detailed Sequence: All photos chronologically
├── Multi-Angle Comparison: Same stage, different angles
└── Time-lapse: Animation if >20 photos
```
### 5.2 Layout Options for Multi-Angle Coverage
**Option A: Separate Sections per Angle**
- Group by viewing angle
- Show progression for each angle separately
- Good for systematic documentation
**Option B: Chronological Interleaving**
- Mix all angles chronologically
- Label each photo with angle indicator
- Shows true timeline
**Option C: Comparison Grids**
- Create grids showing same progress state from multiple angles
- Highlight specific development stages
- Best for artistic analysis
### 5.3 Generation Pipeline
```bash
# LaTeX/InDesign automation
for painting in paintings:
select_key_photos(painting, n=15)
generate_layout(painting, template)
create_pdf(painting)
create_epub(painting) # optional
create_print_files(painting) # optional
```
---
## Implementation Timeline
### Week 1-2: Infrastructure Setup
- Set up processing cluster (GPU nodes)
- Deploy PostgreSQL + pgvector database
- Install all dependencies
- Create data ingestion pipeline
### Week 3-4: Feature Extraction
- Batch process all 100TB
- Generate embeddings (CLIP/DINO)
- Extract EXIF metadata
- Compute hashes
- Store in database
### Week 5-6: Initial Clustering
- Run HDBSCAN on embeddings
- Generate confidence scores
- Create review queue
- Begin human validation
### Week 7-8: Refinement & Validation
- Refine clusters with composition analysis
- Incorporate human feedback
- Active learning iterations
- Split/merge clusters as needed
### Week 9-10: Temporal Ordering
- Order photos within each cluster
- Validate temporal consistency
- Gap analysis
- Final manual reviews
### Week 11: Quality Control
- Final validation pass
- Resolve remaining ambiguities
- Generate quality reports
- Document edge cases
### Week 12: Book Generation
- Select key photos per painting
- Generate layouts
- Create PDFs and other formats
- Final delivery
---
## Storage & Infrastructure Requirements
### Processing Infrastructure
- **GPU Cluster**: 4-8 A100/H100 GPUs for embedding generation
- **CPU Cluster**: 64-128 cores for feature extraction
- **RAM**: 512GB-1TB for large-scale processing
- **Storage**: 150TB (100TB source + 50TB processed/intermediate)
### Database Requirements
- **PostgreSQL + pgvector**: 50GB for metadata + embeddings
- **Neo4j** (optional): 10GB for relationship graph
- **Object Storage (S3/MinIO)**: 100TB for images
### Network
- 10Gbps+ internal network for data transfer
- Parallel processing to minimize bottlenecks
---
## Cost Estimation (AWS/Cloud)
### Compute Costs
- GPU instances (p4d.24xlarge): ~$32/hour × 500 hours = $16,000
- CPU instances (c6i.32xlarge): ~$5/hour × 1000 hours = $5,000
- **Total Compute: ~$21,000**
### Storage Costs
- S3 Standard: 100TB × $0.023/GB/month × 2 months = $4,700
- Database: $500/month × 2 months = $1,000
- **Total Storage: ~$5,700**
### Data Transfer
- Ingress: Free
- Processing: Internal
- Egress (final delivery): ~$1,000
- **Total Transfer: ~$1,000**
**Total Estimated Cost: $27,700 (cloud) or ~$15,000 (self-hosted)**
---
## Expected Outcomes & Deliverables
### Per Painting
1. Complete chronologically-ordered photo sequence
2. High-quality art book (PDF, 50-200 pages)
3. Print-ready files (CMYK, 300 DPI)
4. Metadata JSON file with provenance
5. Time-lapse video (if >20 photos, MP4 1080p)
6. Web gallery HTML (optional)
### Overall Statistics
- Estimated paintings: 100-10,000 (depends on artist productivity)
- Estimated accuracy: 90-95% with human review
- Processing time: 1.5-2 months
- Storage after deduplication: ~60-80TB (40% reduction)
### Documentation
- Complete processing logs
- Confidence scores for all assignments
- Manual review decisions
- Edge cases and ambiguities resolved
- Quality control reports
---
## Risk Mitigation
### Technical Risks
1. **Clustering errors**: Mitigated by multi-stage validation + human review
2. **Timestamp corruption**: Fall back to visual progression analysis
3. **Storage failures**: RAID + backups + cloud sync
4. **Processing bottlenecks**: Parallel processing + batch optimization
### Data Quality Risks
1. **Missing metadata**: Extract from visual features
2. **Corrupted images**: Flag and exclude, log for recovery
3. **Extreme lighting variations**: Use LAB color space + normalization
4. **Occlusions/partial views**: SIFT features handle partial matches
### Process Risks
1. **Human reviewer fatigue**: Batch reviews, active learning to minimize
2. **Scope creep**: Fixed threshold for manual review (estimate 5-15% of data)
3. **Timeline slippage**: Buffer weeks 11-12 for overruns
---
## Success Metrics
### Clustering Quality
- **Precision**: % of photos correctly assigned to paintings (target: >95%)
- **Recall**: % of actual paintings discovered (target: >90%)
- **Purity**: Average within-cluster consistency (target: >0.85)
### Temporal Ordering Quality
- **Sequence accuracy**: % of correctly ordered pairs (target: >90%)
- **Timestamp reliability**: % of sequences with valid EXIF data
- **Visual consistency**: No temporal regressions in completion
### Efficiency Metrics
- **Processing throughput**: Images processed per hour
- **Review efficiency**: % requiring manual intervention (target: <15%)
- **Cost per painting**: Total cost / number of paintings
### Deliverable Quality
- **Book completeness**: All discovered photos included
- **Layout quality**: Professional presentation standards
- **File quality**: Print-ready specifications met
---
## Conclusion
This strategy provides a comprehensive, technically-grounded approach to organizing 100TB of unorganized art progress photos. By combining state-of-the-art computer vision, robust clustering algorithms, and human-in-the-loop validation, we can achieve 90-95% accuracy in both grouping photos by painting and establishing chronological order.
The multi-stage approach handles the inherent ambiguities in angle, lighting, and metadata variations, while active learning continuously improves the system. The result will be a complete collection of art books documenting the creative progression of each painting.
**Key Success Factors:**
1. Robust feature extraction (CLIP/DINO + SIFT)
2. Multi-stage clustering with validation
3. Confidence-based review prioritization
4. Human expertise for ambiguous cases
5. Comprehensive quality control
**Timeline:** 1.5-2 months
**Cost:** $15,000-$28,000
**Accuracy:** 90-95%
**Deliverables:** One art book per painting with complete temporal documentation
---
## References & Further Reading
### Primary Research Papers
1. Radford et al., CLIP (2021): https://arxiv.org/abs/2103.00020
2. Oquab et al., DINOv2 (2023): https://arxiv.org/abs/2304.07193
3. He et al., ResNet (2015): https://arxiv.org/abs/1512.03385
4. Lowe, SIFT (2004): https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
5. Campello et al., HDBSCAN (2013): https://link.springer.com/chapter/10.1007/978-3-642-37456-2_14
6. Wang et al., SSIM (2004): https://ieeexplore.ieee.org/document/1284395
7. Ronneberger et al., U-Net (2015): https://arxiv.org/abs/1505.04597
8. Johnson et al., FAISS (2017): https://arxiv.org/abs/1702.08734
9. Settles, Active Learning (2009): https://minds.wisconsin.edu/handle/1793/60660
### Books & Surveys
- Szeliski, "Computer Vision: Algorithms and Applications" (2nd ed., 2022)
- Bishop, "Pattern Recognition and Machine Learning" (2006)
- Goodfellow et al., "Deep Learning" (2016)
### Tools & Libraries Documentation
- PyTorch: https://pytorch.org/docs/
- OpenCV: https://docs.opencv.org/
- scikit-learn: https://scikit-learn.org/stable/documentation.html
- HuggingFace Transformers: https://huggingface.co/docs/transformers/
- FAISS: https://github.com/facebookresearch/faiss/wiki
---
**END OF DOCUMENT**