Skip to main content
Glama
orneryd

M.I.M.I.R - Multi-agent Intelligent Memory & Insight Repository

by orneryd
repo.instructions.md5 kB
--- applyTo: '**' --- # Mimir Repository Instructions ## Overview This is **Mimir v1.0.0** - a production-ready MCP server providing Graph-RAG TODO tracking with multi-agent orchestration capabilities. The system combines hierarchical task management with associative memory networks, backed by Neo4j for persistent storage. ## Current Implementation Status ### ✅ COMPLETED Features - **Neo4j Graph Database**: Persistent storage with full CRUD operations - **26 MCP Tools**: 22 graph operations + 4 file indexing tools - **Multi-Agent Locking**: Optimistic locking for concurrent execution - **Context Isolation**: 90%+ context reduction for worker agents - **File Indexing**: Automatic file watching with .gitignore support - **Global CLI Tools**: npm-linked binaries (mimir, mimir-chain, mimir-execute) - **Docker Deployment**: Production containerization - **LangChain 1.0.1**: Updated to latest LangChain with LangGraph ### 🔄 IN PROGRESS - Documentation alignment with current implementation - Migration cleanup from old repository structure ## Key Architecture Decisions ### Database - **Neo4j**: Primary graph database for persistent storage - **No in-memory fallback**: All data persists in Neo4j - **ACID Compliance**: Atomic transactions for data integrity ### Multi-Agent System - **PM Agents**: Full context research and planning - **Worker Agents**: Ephemeral execution with filtered context - **QC Agents**: Adversarial validation and quality control - **Optimistic Locking**: Race condition prevention - **Context Filtering**: Agent-specific context delivery ### Technology Stack - **TypeScript**: ES2022 with strict mode - **MCP Protocol**: Both stdio and HTTP transports - **LangChain 1.0.1**: With LangGraph for agent orchestration - **Docker**: Production containerization - **Vitest**: Testing framework ## Important Files ### Core Implementation - `src/index.ts` - Main MCP server entry point - `src/managers/GraphManager.ts` - Neo4j operations - `src/managers/ContextManager.ts` - Multi-agent context filtering - `src/tools/` - MCP tool definitions (26 total) - `src/orchestrator/` - Multi-agent orchestration system ### Configuration - `package.json` - ES modules, global binaries configured - `docker-compose.yml` - Neo4j + optional MCP server - `tsconfig.json` - ES2022 with ESNext module system - `.env.example` - Environment configuration template ### Documentation - `AGENTS.md` - AI agent instructions and workflows - `README.md` - Project overview and setup - `docs/` - Comprehensive architecture documentation ## Development Workflow ### Setup ```bash npm install && npm run build docker-compose up -d # Start Neo4j npm start # Start MCP server ``` ### Global Commands ```bash npm link # Install global commands mimir-chain "Your request here" mimir-execute output.md ``` ### Common Tasks - **Add MCP Tool**: Create in `src/tools/`, add to index - **Database Schema**: Modify `src/managers/GraphManager.ts` - **Multi-Agent**: Update `src/orchestrator/` components - **Documentation**: Update `AGENTS.md` and `README.md` ## Migration Notes ### From Previous Version - Migrated from in-memory graphology to persistent Neo4j - Updated from LangChain 0.3.x to 1.0.1 (major breaking changes) - Added multi-agent orchestration capabilities - Implemented optimistic locking and context isolation - Added file indexing system with automatic watching ### Breaking Changes Resolved - `AgentExecutor` → `createReactAgent` from `@langchain/langgraph` - `z.record(z.any())` → `z.record(z.string(), z.any())` for Zod 4.x - Module system updated to ES modules with proper shebang lines - Docker Compose version field removed (deprecated) ## Best Practices ### Code Organization - Follow existing patterns in `src/tools/` for new MCP tools - Use GraphManager for all database operations - Implement proper error handling with structured responses - Add TypeScript types for new features ### Multi-Agent Development - Use optimistic locking for concurrent access - Implement context filtering for worker agents - Store all task context in graph nodes - Follow PM → Worker → QC validation flow ### Testing - Add tests for new MCP tools in `tests/` - Test both success and error cases - Verify Neo4j integration works correctly - Test multi-agent locking scenarios ## Common Issues & Solutions ### Neo4j Connection - Ensure Docker container is running: `docker-compose up -d` - Check connection string: `bolt://localhost:7687` - Verify credentials: neo4j/password (default) ### LangChain Issues - Use `@langchain/langgraph` for agent creation - Import from correct modules (see migration notes) - Check LangChain version compatibility ### Docker Issues - Remove `version:` field from docker-compose.yml - Stop conflicting containers: `docker stop container_name` - Clean up: `docker system prune` ### Build Issues - Ensure TypeScript compiles: `npm run build` - Check ES module configuration in package.json - Verify shebang lines in entry points

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/orneryd/Mimir'

If you have feedback or need assistance with the MCP directory API, please join our Discord server