.env.exampleā¢4.49 kB
# =============================================================================
# Data Planning Agent - Environment Variables Example
# =============================================================================
# Copy this file to .env and fill in your actual values
# NEVER commit the .env file to git - it contains sensitive information!
# =============================================================================
# -----------------------------------------------------------------------------
# Gemini Configuration
# -----------------------------------------------------------------------------
# Gemini API Key for conversational AI
GEMINI_API_KEY=your-gemini-api-key-here
# Gemini model to use (gemini-2.5-pro recommended for planning tasks)
GEMINI_MODEL=gemini-2.5-pro
# -----------------------------------------------------------------------------
# Output Configuration
# -----------------------------------------------------------------------------
# Default output directory for generated Data PRPs
# Supports local paths: ./output or /absolute/path
# Supports GCS paths: gs://your-bucket/planning-sessions
OUTPUT_DIR=./output
# -----------------------------------------------------------------------------
# MCP Service Configuration
# -----------------------------------------------------------------------------
# MCP server name
MCP_SERVER_NAME=data-planning-agent
# MCP server version
MCP_SERVER_VERSION=1.0.0
# MCP transport mode (stdio or http)
# - stdio: For local development and subprocess communication (default)
# - http: For containerized deployment and remote connections
MCP_TRANSPORT=stdio
# Host address for HTTP server (only used when MCP_TRANSPORT=http)
# Use 0.0.0.0 in containers to accept connections from any interface
MCP_HOST=0.0.0.0
# Port for MCP HTTP service (only used when MCP_TRANSPORT=http)
MCP_PORT=8080
# -----------------------------------------------------------------------------
# Optional Configuration
# -----------------------------------------------------------------------------
# Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
LOG_LEVEL=INFO
# Maximum conversation turns before forcing completion (safety limit)
MAX_CONVERSATION_TURNS=10
# -----------------------------------------------------------------------------
# Context Configuration (Optional)
# -----------------------------------------------------------------------------
# Directory containing organizational context markdown files
# Supports local paths: ./context or /absolute/path/to/context
# Supports GCS paths: gs://your-bucket/context/
# Context files are prepended to all AI prompts to customize agent behavior
# CONTEXT_DIR=./context
# -----------------------------------------------------------------------------
# Vertex AI Search Datastore Configuration (for grounding)
# -----------------------------------------------------------------------------
# GCP project ID where the Vertex AI Search datastore is located
# This datastore should contain the data catalog from data-discovery-agent
VERTEX_PROJECT_ID=your-gcp-project-id
# Location of the Vertex AI Search datastore (typically 'global')
VERTEX_DATASTORE_LOCATION=global
# Vertex AI Search datastore ID for data grounding
# This enables Gemini to access the data catalog for context-aware planning
# The datastore should be created by the data-discovery-agent
VERTEX_DATASTORE_ID=data-discovery-metadata
# -----------------------------------------------------------------------------
# Search Fan-out Configuration
# -----------------------------------------------------------------------------
# Enable intelligent search fan-out when no direct matches are found
# When enabled, the system generates related queries to broaden the search
ENABLE_SEARCH_FANOUT=true
# Number of related queries to generate for fan-out search
# Recommended: 3-5 queries for good coverage without being too slow
SEARCH_FANOUT_COUNT=4
# -----------------------------------------------------------------------------
# Question Reflection Configuration
# -----------------------------------------------------------------------------
# Enable question reflection/self-correction for higher quality questions
# When enabled, the AI reviews and refines its own questions before presenting them
# This helps eliminate redundant questions and ensures focus on product structure
# Recommendation: Keep enabled (true) for production, disable for faster testing
ENABLE_QUESTION_REFLECTION=true