Skip to main content
Glama

Smart Coding MCP

npm version npm downloads License: MIT Node.js

An extensible Model Context Protocol (MCP) server that provides intelligent semantic code search for AI assistants. Built with local AI models using Matryoshka Representation Learning (MRL) for flexible embedding dimensions (64-768d).

What This Does

AI coding assistants work better when they can find relevant code quickly. Traditional keyword search falls short - if you ask "where do we handle authentication?" but your code uses "login" and "session", keyword search misses it.

This MCP server solves that by indexing your codebase with AI embeddings. Your AI assistant can search by meaning instead of exact keywords, finding relevant code even when the terminology differs.

Example

Available Tools

🔍 a_semantic_search - Find Code by Meaning

The primary tool for codebase exploration. Uses AI embeddings to understand what you're looking for, not just match keywords.

How it works: Converts your natural language query into a vector, then finds code chunks with similar meaning using cosine similarity + exact match boosting.

Best for:

  • Exploring unfamiliar codebases: "How does authentication work?"

  • Finding related code: "Where do we validate user input?"

  • Conceptual searches: "error handling patterns"

  • Works even with typos: "embeding modle initializashun" still finds embedding code

Example queries:

"Where do we handle cache persistence?" "How is the database connection managed?" "Find all API endpoint definitions"

đŸ“Ļ d_check_last_version - Package Version Lookup

Fetches the latest version of any package from its official registry. Supports 20+ ecosystems.

How it works: Queries official package registries (npm, PyPI, Crates.io, etc.) in real-time. No guessing, no stale training data.

Supported ecosystems: npm, PyPI, Crates.io, Maven, Go, RubyGems, NuGet, Packagist, Hex, pub.dev, Homebrew, Conda, and more.

Best for:

  • Before adding dependencies: "express" → 4.18.2

  • Checking for updates: "pip:requests" → 2.31.0

  • Multi-ecosystem projects: "npm:react", "go:github.com/gin-gonic/gin"

Example usage:

"What's the latest version of lodash?" "Check if there's a newer version of axios"

🔄 b_index_codebase - Manual Reindexing

Triggers a full reindex of your codebase. Normally not needed since indexing is automatic and incremental.

How it works: Scans all files, generates new embeddings, and updates the SQLite cache. Uses progressive indexing so you can search while it runs.

When to use:

  • After major refactoring or branch switches

  • After pulling large changes from remote

  • If search results seem stale or incomplete

  • After changing embedding configuration (dimension, model)


đŸ—‘ī¸ c_clear_cache - Reset Everything

Deletes the embeddings cache entirely, forcing a complete reindex on next search.

How it works: Removes the .smart-coding-cache/ directory. Next search or index operation starts fresh.

When to use:

  • Cache corruption (rare, but possible)

  • Switching embedding models or dimensions

  • Starting fresh after major codebase restructure

  • Troubleshooting search issues


📂 e_set_workspace - Switch Projects

Changes the workspace path at runtime without restarting the server.

How it works: Updates the internal workspace reference, creates cache folder for new path, and optionally triggers reindexing.

When to use:

  • Working on multiple projects in one session

  • Monorepo navigation between packages

  • Switching between related repositories


â„šī¸ f_get_status - Server Health Check

Returns comprehensive status information about the MCP server.

What it shows:

  • Server version and uptime

  • Workspace path and cache location

  • Indexing status (ready, indexing, percentage complete)

  • Files indexed and chunk count

  • Model configuration (name, dimension, device)

  • Cache size and type

When to use:

  • Start of session to verify everything is working

  • Debugging connection or indexing issues

  • Checking indexing progress on large codebases


Installation

npm install -g smart-coding-mcp

To update:

npm update -g smart-coding-mcp

IDE Integration

Detailed setup instructions for your preferred environment:

IDE / App

Setup Guide

${workspaceFolder} Support

VS Code

View Guide

✅ Yes

Cursor

View Guide

✅ Yes

Windsurf

View Guide

❌ Absolute paths only

Claude Desktop

View Guide

❌ Absolute paths only

OpenCode

View Guide

❌ Absolute paths only

Raycast

View Guide

❌ Absolute paths only

Antigravity

View Guide

❌ Absolute paths only

Quick Setup

Add to your MCP config file:

{ "mcpServers": { "smart-coding-mcp": { "command": "smart-coding-mcp", "args": ["--workspace", "/absolute/path/to/your/project"] } } }

Config File Locations

IDE

OS

Path

Claude Desktop

macOS

~/Library/Application Support/Claude/claude_desktop_config.json

Claude Desktop

Windows

%APPDATA%\Claude\claude_desktop_config.json

OpenCode

Global

~/.config/opencode/opencode.json

OpenCode

Project

opencode.json in project root

Windsurf

macOS

~/.codeium/windsurf/mcp_config.json

Windsurf

Windows

%USERPROFILE%\.codeium\windsurf\mcp_config.json

Multi-Project Setup

{ "mcpServers": { "smart-coding-frontend": { "command": "smart-coding-mcp", "args": ["--workspace", "/path/to/frontend"] }, "smart-coding-backend": { "command": "smart-coding-mcp", "args": ["--workspace", "/path/to/backend"] } } }

Environment Variables

Customize behavior via environment variables:

Variable

Default

Description

SMART_CODING_VERBOSE

false

Enable detailed logging

SMART_CODING_MAX_RESULTS

5

Max search results returned

SMART_CODING_BATCH_SIZE

100

Files to process in parallel

SMART_CODING_MAX_FILE_SIZE

1048576

Max file size in bytes (1MB)

SMART_CODING_CHUNK_SIZE

25

Lines of code per chunk

SMART_CODING_EMBEDDING_DIMENSION

128

MRL dimension (64, 128, 256, 512, 768)

SMART_CODING_EMBEDDING_MODEL

nomic-ai/nomic-embed-text-v1.5

AI embedding model

SMART_CODING_DEVICE

cpu

Inference device (cpu, webgpu, auto)

SMART_CODING_SEMANTIC_WEIGHT

0.7

Weight for semantic vs exact matching

SMART_CODING_EXACT_MATCH_BOOST

1.5

Boost multiplier for exact text matches

SMART_CODING_MAX_CPU_PERCENT

50

Max CPU usage during indexing (10-100%)

SMART_CODING_CHUNKING_MODE

smart

Code chunking (smart, ast, line)

SMART_CODING_WATCH_FILES

false

Auto-reindex on file changes

SMART_CODING_AUTO_INDEX_DELAY

5000

Delay before background indexing (ms), false to disable

Example with env vars:

{ "mcpServers": { "smart-coding-mcp": { "command": "smart-coding-mcp", "args": ["--workspace", "/path/to/project"], "env": { "SMART_CODING_VERBOSE": "true", "SMART_CODING_MAX_RESULTS": "10", "SMART_CODING_EMBEDDING_DIMENSION": "256" } } } }

Performance

Progressive Indexing - Search works immediately while indexing continues in the background. No waiting for large codebases.

Resource Throttling - CPU limited to 50% by default. Your machine stays responsive during indexing.

SQLite Cache - 5-10x faster than JSON. Automatic migration from older JSON caches.

Incremental Updates - Only changed files are re-indexed. Saves every 5 batches, so no data loss if interrupted.

Optimized Defaults - 128d embeddings (2x faster than 256d with minimal quality loss), smart batch sizing, parallel processing.

How It Works

flowchart TB subgraph IDE["IDE / AI Assistant"] Agent["AI Agent<br/>(Claude, GPT, Gemini)"] end subgraph MCP["Smart Coding MCP Server"] direction TB Protocol["Model Context Protocol<br/>JSON-RPC over stdio"] Tools["MCP Tools<br/>semantic_search | index_codebase | set_workspace | get_status"] subgraph Indexing["Indexing Pipeline"] Discovery["File Discovery<br/>glob patterns + smart ignore"] Chunking["Code Chunking<br/>Smart (regex) / AST (Tree-sitter)"] Embedding["AI Embedding<br/>transformers.js + ONNX Runtime"] end subgraph AI["AI Model"] Model["nomic-embed-text-v1.5<br/>Matryoshka Representation Learning"] Dimensions["Flexible Dimensions<br/>64 | 128 | 256 | 512 | 768"] Normalize["Layer Norm → Slice → L2 Normalize"] end subgraph Search["Search"] QueryEmbed["Query → Vector"] Cosine["Cosine Similarity"] Hybrid["Hybrid Search<br/>Semantic + Exact Match Boost"] end end subgraph Storage["Cache"] Vectors["SQLite Database<br/>embeddings.db (WAL mode)"] Hashes["File Hashes<br/>Incremental updates"] Progressive["Progressive Indexing<br/>Search works during indexing"] end Agent <-->|"MCP Protocol"| Protocol Protocol --> Tools Tools --> Discovery Discovery --> Chunking Chunking --> Embedding Embedding --> Model Model --> Dimensions Dimensions --> Normalize Normalize --> Vectors Tools --> QueryEmbed QueryEmbed --> Model Cosine --> Hybrid Vectors --> Cosine Hybrid --> Agent

Tech Stack

Component

Technology

Protocol

Model Context Protocol (JSON-RPC)

AI Model

nomic-embed-text-v1.5 (MRL)

Inference

transformers.js + ONNX Runtime

Chunking

Smart regex / Tree-sitter AST

Search

Cosine similarity + exact match boost

Cache

SQLite with WAL mode

Privacy

Everything runs 100% locally:

  • AI model runs on your machine (no API calls)

  • Code never leaves your system

  • No telemetry or analytics

  • Cache stored in .smart-coding-cache/

Research Background

This project builds on research from Cursor showing that semantic search improves AI coding agent performance by 12.5% on average. The key insight: AI assistants benefit more from relevant context than from large amounts of context.

License

MIT License - Copyright (c) 2025 Omar Haris

See LICENSE for full text.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/omar-haris/smart-coding-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server