Skip to main content
Glama

Taboola API MCP Server

by okochansky

Taboola API MCP Server

A flexible MCP (Model Context Protocol) server with fetchRecommendations functionality. Supports both local (STDIO) and remote (HTTP) deployment modes.

Setup

  1. Install dependencies:

pip install -r requirements.txt
  1. Activate virtual environment (if using one):

source .venv/bin/activate

Related MCP server: tavily-search-mcp-server

Deployment Options

Local Mode (STDIO Transport)

Perfect for local development and testing with MCP Inspector:

# Default mode - runs locally with STDIO transport python server.py # Explicitly specify local mode python server.py --mode local

Remote Mode (HTTP Server)

Deploy as a remote HTTP server accessible over the network:

# Run as HTTP server on default port 8000 python server.py --mode remote # Specify custom host and port python server.py --mode remote --host 0.0.0.0 --port 3000 # Using environment variables export MCP_MODE=remote export MCP_HOST=0.0.0.0 export MCP_PORT=8000 python server.py

Configuration Options

Command Line Arguments

  • --mode: Server mode (local or remote) - default: local

  • --host: Host to bind to in remote mode - default: 0.0.0.0

  • --port: Port to bind to in remote mode - default: 8000

Environment Variables

  • MCP_MODE: Server mode (local or remote)

  • MCP_HOST: Host to bind to in remote mode

  • MCP_PORT: Port to bind to in remote mode

Environment variables override command line arguments.

Functions

fetchRecommendations

Fetches recommendations for a given publisher using their API key via Taboola API.

Parameters:

  • publisher_name (str): The name of the publisher

  • api_key (str): The API key for authentication

Returns:

  • str: JSON recommendations data from Taboola API

Usage Examples

Local Development with MCP Inspector

# Start server locally python server.py # In another terminal, run MCP Inspector npx @modelcontextprotocol/inspector python server.py

Remote Deployment

# Deploy as remote server python server.py --mode remote --port 8000 # Server will be available at: http://your-server-ip:8000 # Connect using HTTP transport with MCP clients

Production Deployment

For production, consider using environment variables:

export MCP_MODE=remote export MCP_HOST=0.0.0.0 export MCP_PORT=8000 python server.py

Or with a process manager like PM2:

pm2 start server.py --name "taboola-mcp" -- --mode remote --port 8000

Testing

Use the provided test script to verify functionality:

# Edit test_function.py with your credentials python test_function.py

Cloud Deployment

Render Deployment

Deploy easily on Render cloud platform:

Option 1: Using Render.yaml (Recommended)

  1. Push your code to GitHub/GitLab

  2. Connect to Render:

    • Go to Render Dashboard

    • Click "New" > "Blueprint"

    • Connect your repository

    • The render.yaml file will be automatically detected

  3. Deploy:

    • Render will automatically build and deploy your MCP server

    • Your server will be available at: https://your-app-name.onrender.com

Option 2: Manual Render Setup

  1. Create a new Web Service on Render

  2. Connect your repository

  3. Configure the service:

    • Build Command: pip install -r requirements.txt

    • Start Command: python server.py --mode remote --host 0.0.0.0 --port $PORT

    • Environment Variables:

      • MCP_MODE=remote

      • MCP_HOST=0.0.0.0

      • PYTHON_VERSION=3.13.0

  4. Deploy and get your URL

Docker Deployment

For any Docker-compatible platform:

# Build and run locally docker build -t taboola-mcp-server . docker run -p 8000:8000 taboola-mcp-server # Or use docker-compose docker-compose up -d

Other Cloud Platforms

The server is compatible with:

  • Heroku: Use Procfile with web: python server.py --mode remote --port $PORT

  • Railway: Deploy directly from GitHub with automatic detection

  • DigitalOcean App Platform: Use the provided docker-compose.yml

  • AWS/GCP/Azure: Deploy using Docker or direct Python deployment

Security Notes

  • In remote mode, the server binds to 0.0.0.0 by default (all interfaces)

  • Consider using a reverse proxy (nginx, Apache) for production deployments

  • Ensure proper firewall rules are in place for remote access

  • API keys are passed as parameters - ensure secure transmission (HTTPS recommended)

  • Cloud platforms like Render automatically provide HTTPS endpoints

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/okochansky/MCPTaboolaAPI'

If you have feedback or need assistance with the MCP directory API, please join our Discord server