Skip to main content
Glama

runSEOAudit

Analyze and optimize webpage SEO by auditing on-page elements, meta tags, and content structure directly within the browser using BrowserTools MCP's Chrome extension.

Instructions

Run an SEO audit on the current page

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault

No arguments

Implementation Reference

  • MCP server.tool registration for 'runSEOAudit' which proxies requests to the browser server /seo-audit endpoint
    server.tool( "runSEOAudit", "Run an SEO audit on the current page", {}, async () => { return await withServerConnection(async () => { try { console.log( `Sending POST request to http://${discoveredHost}:${discoveredPort}/seo-audit` ); const response = await fetch( `http://${discoveredHost}:${discoveredPort}/seo-audit`, { method: "POST", headers: { "Content-Type": "application/json", Accept: "application/json", }, body: JSON.stringify({ category: AuditCategory.SEO, source: "mcp_tool", timestamp: Date.now(), }), } ); // Log the response status console.log(`SEO audit response status: ${response.status}`); if (!response.ok) { const errorText = await response.text(); console.error(`SEO audit error: ${errorText}`); throw new Error(`Server returned ${response.status}: ${errorText}`); } const json = await response.json(); return { content: [ { type: "text", text: JSON.stringify(json, null, 2), }, ], }; } catch (error) { const errorMessage = error instanceof Error ? error.message : String(error); console.error("Error in SEO audit:", errorMessage); return { content: [ { type: "text", text: `Failed to run SEO audit: ${errorMessage}`, }, ], }; } }); } );
  • Core handler function runSEOAudit that runs Lighthouse SEO audit and processes results
    export async function runSEOAudit(url: string): Promise<AIOptimizedSEOReport> { try { const lhr = await runLighthouseAudit(url, [AuditCategory.SEO]); return extractAIOptimizedData(lhr, url); } catch (error) { throw new Error( `SEO audit failed: ${ error instanceof Error ? error.message : String(error) }` ); } }
  • extractAIOptimizedData helper that transforms raw Lighthouse results into structured AIOptimizedSEOReport
    /** * Extract AI-optimized SEO data from Lighthouse results */ const extractAIOptimizedData = ( lhr: LighthouseResult, url: string ): AIOptimizedSEOReport => { const categoryData = lhr.categories[AuditCategory.SEO]; const audits = lhr.audits || {}; // Add metadata const metadata = { url, timestamp: lhr.fetchTime || new Date().toISOString(), device: "desktop", // This could be made configurable lighthouseVersion: lhr.lighthouseVersion, }; // Initialize variables const issues: AISEOIssue[] = []; const categories: { [category: string]: { score: number; issues_count: number }; } = { content: { score: 0, issues_count: 0 }, mobile: { score: 0, issues_count: 0 }, crawlability: { score: 0, issues_count: 0 }, other: { score: 0, issues_count: 0 }, }; // Count audits by type let failedCount = 0; let passedCount = 0; let manualCount = 0; let informativeCount = 0; let notApplicableCount = 0; // Process audit refs const auditRefs = categoryData?.auditRefs || []; // First pass: count audits by type and initialize categories auditRefs.forEach((ref) => { const audit = audits[ref.id]; if (!audit) return; // Count by scoreDisplayMode if (audit.scoreDisplayMode === "manual") { manualCount++; } else if (audit.scoreDisplayMode === "informative") { informativeCount++; } else if (audit.scoreDisplayMode === "notApplicable") { notApplicableCount++; } else if (audit.score !== null) { // Binary pass/fail if (audit.score >= 0.9) { passedCount++; } else { failedCount++; } } // Categorize the issue let category = "other"; if ( ref.id.includes("crawl") || ref.id.includes("http") || ref.id.includes("redirect") || ref.id.includes("robots") ) { category = "crawlability"; } else if ( ref.id.includes("viewport") || ref.id.includes("font-size") || ref.id.includes("tap-targets") ) { category = "mobile"; } else if ( ref.id.includes("document") || ref.id.includes("meta") || ref.id.includes("description") || ref.id.includes("canonical") || ref.id.includes("title") || ref.id.includes("link") ) { category = "content"; } // Update category score and issues count if (audit.score !== null && audit.score < 0.9) { categories[category].issues_count++; } }); // Second pass: process failed audits into AI-friendly format auditRefs .filter((ref) => { const audit = audits[ref.id]; return audit && audit.score !== null && audit.score < 0.9; }) .sort((a, b) => (b.weight || 0) - (a.weight || 0)) // No limit on failed audits - we'll filter dynamically based on impact .forEach((ref) => { const audit = audits[ref.id]; // Determine impact level based on score and weight let impact: "critical" | "serious" | "moderate" | "minor" = "moderate"; if (audit.score === 0) { impact = "critical"; } else if (audit.score !== null && audit.score <= 0.5) { impact = "serious"; } else if (audit.score !== null && audit.score > 0.7) { impact = "minor"; } // Categorize the issue let category = "other"; if ( ref.id.includes("crawl") || ref.id.includes("http") || ref.id.includes("redirect") || ref.id.includes("robots") ) { category = "crawlability"; } else if ( ref.id.includes("viewport") || ref.id.includes("font-size") || ref.id.includes("tap-targets") ) { category = "mobile"; } else if ( ref.id.includes("document") || ref.id.includes("meta") || ref.id.includes("description") || ref.id.includes("canonical") || ref.id.includes("title") || ref.id.includes("link") ) { category = "content"; } // Extract details const details: { selector?: string; value?: string; issue?: string }[] = []; if (audit.details) { const auditDetails = audit.details as any; if (auditDetails.items && Array.isArray(auditDetails.items)) { // Determine item limit based on impact const itemLimit = DETAIL_LIMITS[impact]; auditDetails.items.slice(0, itemLimit).forEach((item: any) => { const detail: { selector?: string; value?: string; issue?: string; } = {}; if (item.selector) { detail.selector = item.selector; } if (item.value !== undefined) { detail.value = item.value; } if (item.issue) { detail.issue = item.issue; } if (Object.keys(detail).length > 0) { details.push(detail); } }); } } // Create the issue const issue: AISEOIssue = { id: ref.id, title: audit.title, impact, category, details: details.length > 0 ? details : undefined, score: audit.score, }; issues.push(issue); }); // Calculate overall score const score = Math.round((categoryData?.score || 0) * 100); // Generate prioritized recommendations const prioritized_recommendations: string[] = []; // Add category-specific recommendations Object.entries(categories) .filter(([_, data]) => data.issues_count > 0) .sort(([_, a], [__, b]) => b.issues_count - a.issues_count) .forEach(([category, data]) => { if (data.issues_count === 0) return; let recommendation = ""; switch (category) { case "content": recommendation = `Improve SEO content (${data.issues_count} issues): titles, descriptions, and headers`; break; case "mobile": recommendation = `Optimize for mobile devices (${data.issues_count} issues)`; break; case "crawlability": recommendation = `Fix crawlability issues (${data.issues_count} issues): robots.txt, sitemaps, and redirects`; break; default: recommendation = `Fix ${data.issues_count} SEO issues in category: ${category}`; } prioritized_recommendations.push(recommendation); }); // Add specific high-impact recommendations if (issues.some((issue) => issue.id === "meta-description")) { prioritized_recommendations.push( "Add a meta description to improve click-through rate" ); } if (issues.some((issue) => issue.id === "document-title")) { prioritized_recommendations.push( "Add a descriptive page title with keywords" ); } if (issues.some((issue) => issue.id === "hreflang")) { prioritized_recommendations.push( "Fix hreflang implementation for international SEO" ); } if (issues.some((issue) => issue.id === "canonical")) { prioritized_recommendations.push("Implement proper canonical tags"); } // Create the report content const reportContent: SEOReportContent = { score, audit_counts: { failed: failedCount, passed: passedCount, manual: manualCount, informative: informativeCount, not_applicable: notApplicableCount, }, issues, categories, prioritized_recommendations: prioritized_recommendations.length > 0 ? prioritized_recommendations : undefined, }; // Return the full report following the LighthouseReport interface return { metadata, report: reportContent, }; };
  • Type definitions for SEOReportContent and AIOptimizedSEOReport (input/output schema)
    /** * SEO-specific report content structure */ export interface SEOReportContent { score: number; // Overall score (0-100) audit_counts: { // Counts of different audit types failed: number; passed: number; manual: number; informative: number; not_applicable: number; }; issues: AISEOIssue[]; categories: { [category: string]: { score: number; issues_count: number; }; }; prioritized_recommendations?: string[]; // Ordered list of recommendations } /** * Full SEO report implementing the base LighthouseReport interface */ export type AIOptimizedSEOReport = LighthouseReport<SEOReportContent>;
  • Endpoint registration for /seo-audit that calls lighthouse runSEOAudit (imported line 17)
    private setupSEOAudit() { this.setupAuditEndpoint(AuditCategory.SEO, "/seo-audit", runSEOAudit); }

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/oenius/browser-tools-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server