tool_definitions.pyā¢4.22 kB
"""
Tool definitions - only basic metadata, schemas auto-generated from functions.
This is the single source of truth for tool metadata.
"""
from typing import List, Dict, Any
# Basic tool definitions - schemas will be auto-generated
TOOL_DEFINITIONS = [
{
"name": "info",
"function": "info",
"description": "Get information about the gurddy package",
"category": "meta",
"module": "handlers.gurddy"
},
{
"name": "install",
"function": "pip_install",
"description": "Install or upgrade the gurddy package",
"category": "meta",
"module": "handlers.gurddy"
},
{
"name": "run_example",
"function": "run_example",
"description": "Run a gurddy example (lp, csp, n_queens, graph_coloring, map_coloring, scheduling, logic_puzzles, optimized_csp, optimized_lp, minimax, scipy_optimization, classic_problems)",
"category": "examples",
"module": "handlers.gurddy"
},
{
"name": "solve_n_queens",
"function": "solve_n_queens",
"description": "Solve the N-Queens problem",
"category": "csp",
"module": "handlers.gurddy"
},
{
"name": "solve_sudoku",
"function": "solve_sudoku",
"description": "Solve a 9x9 Sudoku puzzle",
"category": "csp",
"module": "handlers.gurddy"
},
{
"name": "solve_graph_coloring",
"function": "solve_graph_coloring",
"description": "Solve graph coloring problem",
"category": "csp",
"module": "handlers.gurddy"
},
{
"name": "solve_map_coloring",
"function": "solve_map_coloring",
"description": "Solve map coloring problem",
"category": "csp",
"module": "handlers.gurddy"
},
{
"name": "solve_lp",
"function": "solve_lp",
"description": "Solve a Linear Programming (LP) or Mixed Integer Programming (MIP) problem using PuLP",
"category": "optimization",
"module": "handlers.gurddy"
},
{
"name": "solve_production_planning",
"function": "solve_production_planning",
"description": "Solve a production planning optimization problem with optional sensitivity analysis",
"category": "optimization",
"module": "handlers.gurddy"
},
{
"name": "solve_minimax_game",
"function": "solve_minimax_game",
"description": "Solve a two-player zero-sum game using minimax (game theory)",
"category": "game_theory",
"module": "handlers.gurddy"
},
{
"name": "solve_minimax_decision",
"function": "solve_minimax_decision",
"description": "Solve a minimax decision problem under uncertainty (robust optimization)",
"category": "game_theory",
"module": "handlers.gurddy"
},
{
"name": "solve_24_point_game",
"function": "solve_24_point_game",
"description": "Solve 24-point game with four numbers using arithmetic operations",
"category": "classic",
"module": "handlers.gurddy"
},
{
"name": "solve_chicken_rabbit_problem",
"function": "solve_chicken_rabbit_problem",
"description": "Solve classic chicken-rabbit problem with heads and legs constraints",
"category": "classic",
"module": "handlers.gurddy"
},
{
"name": "solve_scipy_portfolio_optimization",
"function": "solve_scipy_portfolio_optimization",
"description": "Solve nonlinear portfolio optimization using SciPy",
"category": "scipy",
"module": "handlers.gurddy"
},
{
"name": "solve_scipy_statistical_fitting",
"function": "solve_scipy_statistical_fitting",
"description": "Solve statistical parameter estimation using SciPy",
"category": "scipy",
"module": "handlers.gurddy"
},
{
"name": "solve_scipy_facility_location",
"function": "solve_scipy_facility_location",
"description": "Solve facility location problem using hybrid CSP-SciPy approach",
"category": "scipy",
"module": "handlers.gurddy"
},
]