Skip to main content
Glama

Gurddy MCP Server

by novvoo
gurddy.py20 kB
from __future__ import annotations import os import subprocess import sys from typing import Dict, Optional from typing import List, Any try: import gurddy except Exception: # pragma: no cover - gurddy may be external gurddy = None ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) def pip_install(package: str, upgrade: bool = False) -> Dict[str, str]: """Install a Python package using pip in the current Python environment. Returns a dict with keys: success ("true"/"false"), output (str). """ args = [sys.executable, '-m', 'pip', 'install'] if upgrade: args.append('--upgrade') args.append(package) try: completed = subprocess.run(args, capture_output=True, text=True, check=False) success = completed.returncode == 0 output = completed.stdout + '\n' + completed.stderr except Exception as e: return {"success": "false", "output": str(e)} return {"success": "true" if success else "false", "output": output} def info() -> Dict[str, str]: """Return a short project description for gurddy (pulled from packaged description hardcoded here). This avoids network access and provides the MCP summary. """ desc = ( "Gurddy MCP Server provides comprehensive optimization and problem-solving capabilities through MCP. " "Supports CSP (N-Queens, Graph/Map Coloring, Sudoku, Logic Puzzles, Scheduling), " "LP/MIP (Linear Programming, Production Planning, Portfolio Optimization), " "and Game Theory (Minimax, Zero-Sum Games, Robust Optimization). " "Built on gurddy optimization library with PuLP integration. " "Available via stdio (IDE integration) and HTTP/SSE (web clients)." ) return {"name": "gurddy", "description": desc} def run_example(example_name: str) -> Dict[str, Optional[str]]: """Run one of the bundled example scripts (lp or csp). Returns a dict with keys: rc (int), output (str). """ examples_dir = os.path.join(ROOT, 'examples') # Map example names to specific script files example_scripts = { 'lp': 'optimized_lp.py', 'csp': 'n_queens.py', 'n_queens': 'n_queens.py', 'graph_coloring': 'graph_coloring.py', 'map_coloring': 'map_coloring.py', 'scheduling': 'scheduling.py', 'logic_puzzles': 'logic_puzzles.py', 'optimized_csp': 'optimized_csp.py', 'optimized_lp': 'optimized_lp.py', 'minimax': 'minimax.py' } if example_name not in example_scripts: available = ', '.join(example_scripts.keys()) return {"rc": 1, "output": f"Unknown example '{example_name}'. Available examples: {available}"} script = os.path.join(examples_dir, example_scripts[example_name]) if not os.path.exists(script): return {"rc": 1, "output": f"Example script not found: {script}"} try: completed = subprocess.run([sys.executable, script], capture_output=True, text=True, check=False) output = completed.stdout if completed.stderr: output += '\n--- STDERR ---\n' + completed.stderr return {"rc": completed.returncode, "output": output} except Exception as e: return {"rc": 1, "output": f"Error running example: {str(e)}"} def solve_sudoku(puzzle: List[List[int]]) -> Dict[str, Any]: """Solve a 9x9 Sudoku puzzle using the gurddy Model API. puzzle: list of 9 lists each with 9 ints (0 for empty) Returns dict: { 'success': bool, 'solution': [[ints]] or None, 'error': str or None } """ if gurddy is None: return {"success": False, "solution": None, "error": "gurddy package not available"} # basic validation if not isinstance(puzzle, list) or len(puzzle) != 9: return {"success": False, "solution": None, "error": "puzzle must be 9x9 list"} for row in puzzle: if not isinstance(row, list) or len(row) != 9: return {"success": False, "solution": None, "error": "puzzle must be 9x9 list"} model = gurddy.Model(name="SudokuCSP", problem_type="CSP") vars_dict = {} for r in range(1, 10): for c in range(1, 10): var_name = f"cell_{r}_{c}" vars_dict[var_name] = model.addVar(var_name, domain=list(range(1, 10))) # Row constraints for r in range(1, 10): row_vars = [vars_dict[f"cell_{r}_{c}"] for c in range(1, 10)] model.addConstraint(gurddy.AllDifferentConstraint(row_vars)) # Column constraints for c in range(1, 10): col_vars = [vars_dict[f"cell_{r}_{c}"] for r in range(1, 10)] model.addConstraint(gurddy.AllDifferentConstraint(col_vars)) # 3x3 blocks for br in range(3): for bc in range(3): block_vars = [] for i in range(3): for j in range(3): row = br * 3 + i + 1 col = bc * 3 + j + 1 block_vars.append(vars_dict[f"cell_{row}_{col}"]) model.addConstraint(gurddy.AllDifferentConstraint(block_vars)) # Add givens for r in range(9): for c in range(9): val = puzzle[r][c] if isinstance(val, int) and val != 0: var = vars_dict[f"cell_{r+1}_{c+1}"] model.addConstraint(var == val) solution = model.solve() if not solution: return {"success": False, "solution": None, "error": "No solution found"} # build grid grid = [] for r in range(1, 10): row_vals = [int(solution[f"cell_{r}_{c}"]) for c in range(1, 10)] grid.append(row_vals) return {"success": True, "solution": grid, "error": None} def solve_lp(problem: Dict[str, Any]) -> Dict[str, Any]: """Solve a simple LP/MIP problem using PuLP. Expected problem dict keys: - profits: dict mapping product -> coefficient (objective) - consumption: dict mapping product -> dict(resource -> coefficient) - capacities: dict mapping resource -> capacity (RHS) - integer: optional bool (default True) Returns dict with keys: success (bool), status (str), objective (float), values (dict), time_seconds (float), error """ try: import time import pulp except Exception as e: return {"success": False, "error": f"PuLP not available: {e}", "status": None} # basic validation and defaults profits = problem.get('profits') consumption = problem.get('consumption') capacities = problem.get('capacities') integer = bool(problem.get('integer', True)) if not (isinstance(profits, dict) and isinstance(consumption, dict) and isinstance(capacities, dict)): return {"success": False, "error": "invalid problem format: profits/consumption/capacities required", "status": None} try: t0 = time.perf_counter() products = list(profits.keys()) prob = pulp.LpProblem('mcp_lp', pulp.LpMaximize) qty = {} for p in products: if integer: qty[p] = pulp.LpVariable(f'q_{p}', lowBound=0, cat=pulp.LpInteger) else: qty[p] = pulp.LpVariable(f'q_{p}', lowBound=0, cat=pulp.LpContinuous) # objective prob += pulp.lpSum([profits[p] * qty[p] for p in products]) # resource constraints for r, cap in capacities.items(): prob += (pulp.lpSum([consumption[p].get(r, 0) * qty[p] for p in products]) <= cap), f'Res_{r}' solver_cmd = pulp.PULP_CBC_CMD(msg=False) status = prob.solve(solver_cmd) t1 = time.perf_counter() obj = pulp.value(prob.objective) vals = {p: float(qty[p].varValue) for p in products} return {"success": True, "status": pulp.LpStatus[status], "objective": obj, "values": vals, "time_seconds": t1 - t0, "error": None} except Exception as e: return {"success": False, "error": str(e), "status": None} def solve_n_queens(n: int = 8) -> Dict[str, Any]: """Solve the N-Queens problem for an n×n board.""" if gurddy is None: return {"success": False, "solution": None, "error": "gurddy package not available"} if not isinstance(n, int) or n < 1: return {"success": False, "solution": None, "error": "n must be a positive integer"} try: model = gurddy.Model(f"{n}-Queens", "CSP") # Variables: one for each row, value represents column position queens = {} for row in range(n): var_name = f"queen_row_{row}" queens[var_name] = model.addVar(var_name, domain=list(range(n))) # Constraint 1: All queens in different columns (AllDifferent) model.addConstraint(gurddy.AllDifferentConstraint(list(queens.values()))) # Constraint 2: No two queens on same diagonal queen_vars = list(queens.values()) for i in range(n): for j in range(i + 1, n): row_diff = j - i # Create constraint function with fixed row difference def make_diagonal_constraint(rd): def not_on_same_diagonal(col1, col2): return abs(col1 - col2) != rd return not_on_same_diagonal constraint_func = make_diagonal_constraint(row_diff) model.addConstraint(gurddy.FunctionConstraint(constraint_func, (queen_vars[i], queen_vars[j]))) # Solve solution = model.solve() if not solution: return {"success": False, "solution": None, "error": "No solution found"} # Format solution as list of column positions positions = [] for row in range(n): col = solution[f"queen_row_{row}"] positions.append(col) return {"success": True, "solution": positions, "error": None} except Exception as e: return {"success": False, "solution": None, "error": str(e)} def solve_graph_coloring(edges: List[List[int]], num_vertices: int, max_colors: int = 4) -> Dict[str, Any]: """Solve graph coloring problem.""" if gurddy is None: return {"success": False, "solution": None, "error": "gurddy package not available"} if not isinstance(edges, list) or not isinstance(num_vertices, int) or not isinstance(max_colors, int): return {"success": False, "solution": None, "error": "Invalid input types"} if num_vertices < 1 or max_colors < 1: return {"success": False, "solution": None, "error": "num_vertices and max_colors must be positive"} try: model = gurddy.Model("GraphColoring", "CSP") # Variables: one for each vertex, domain is available colors vertices = {} for v in range(num_vertices): var_name = f"vertex_{v}" vertices[var_name] = model.addVar(var_name, domain=list(range(max_colors))) # Constraints: Adjacent vertices must have different colors def different_colors(color1, color2): return color1 != color2 for edge in edges: if len(edge) != 2: return {"success": False, "solution": None, "error": "Each edge must have exactly 2 vertices"} v1, v2 = edge if v1 >= num_vertices or v2 >= num_vertices or v1 < 0 or v2 < 0: return {"success": False, "solution": None, "error": f"Vertex indices must be between 0 and {num_vertices-1}"} var1 = vertices[f"vertex_{v1}"] var2 = vertices[f"vertex_{v2}"] model.addConstraint(gurddy.FunctionConstraint(different_colors, (var1, var2))) # Solve solution = model.solve() if not solution: return {"success": False, "solution": None, "error": "No solution found"} # Format solution as list of colors for each vertex colors = [] for v in range(num_vertices): color = solution[f"vertex_{v}"] colors.append(color) return {"success": True, "solution": colors, "error": None} except Exception as e: return {"success": False, "solution": None, "error": str(e)} def solve_map_coloring(regions: List[str], adjacencies: List[List[str]], max_colors: int = 4) -> Dict[str, Any]: """Solve map coloring problem.""" if gurddy is None: return {"success": False, "solution": None, "error": "gurddy package not available"} if not isinstance(regions, list) or not isinstance(adjacencies, list) or not isinstance(max_colors, int): return {"success": False, "solution": None, "error": "Invalid input types"} if len(regions) < 1 or max_colors < 1: return {"success": False, "solution": None, "error": "regions and max_colors must be positive"} try: model = gurddy.Model("MapColoring", "CSP") # Variables: one for each region region_vars = {} for region in regions: region_vars[region] = model.addVar(region, domain=list(range(max_colors))) # Constraints: Adjacent regions must have different colors def different_colors(color1, color2): return color1 != color2 for adjacency in adjacencies: if len(adjacency) != 2: return {"success": False, "solution": None, "error": "Each adjacency must have exactly 2 regions"} region1, region2 = adjacency if region1 not in regions or region2 not in regions: return {"success": False, "solution": None, "error": f"Unknown region in adjacency: {region1}, {region2}"} var1 = region_vars[region1] var2 = region_vars[region2] model.addConstraint(gurddy.FunctionConstraint(different_colors, (var1, var2))) # Solve solution = model.solve() if not solution: return {"success": False, "solution": None, "error": "No solution found"} # Format solution as dict mapping region to color result = {} for region in regions: color = solution[region] result[region] = color return {"success": True, "solution": result, "error": None} except Exception as e: return {"success": False, "solution": None, "error": str(e)} def solve_csp_generic(problem_type: str, parameters: Dict[str, Any]) -> Dict[str, Any]: """Generic CSP solver dispatcher.""" if problem_type == "n_queens": n = parameters.get("n", 8) return solve_n_queens(n) elif problem_type == "graph_coloring": edges = parameters.get("edges", []) num_vertices = parameters.get("num_vertices", 0) max_colors = parameters.get("max_colors", 4) return solve_graph_coloring(edges, num_vertices, max_colors) elif problem_type == "map_coloring": regions = parameters.get("regions", []) adjacencies = parameters.get("adjacencies", []) max_colors = parameters.get("max_colors", 4) return solve_map_coloring(regions, adjacencies, max_colors) else: return {"success": False, "solution": None, "error": f"Unknown problem type: {problem_type}"} def solve_production_planning(profits: Dict[str, float], consumption: Dict[str, Dict[str, float]], capacities: Dict[str, float], integer: bool = True, sensitivity_analysis: bool = False) -> Dict[str, Any]: """Solve production planning problem (wrapper around solve_lp with additional features).""" problem = { "profits": profits, "consumption": consumption, "capacities": capacities, "integer": integer } result = solve_lp(problem) if sensitivity_analysis and result.get("success"): # Add basic sensitivity analysis result["sensitivity"] = { "note": "Sensitivity analysis would show how changes in profits/capacities affect the solution", "implemented": False } return result def solve_minimax_game(payoff_matrix: List[List[float]], player: str = "row") -> Dict[str, Any]: """Solve a two-player zero-sum game using minimax. Args: payoff_matrix: 2D list representing payoffs (row player's perspective) player: "row" for maximizer or "col" for minimizer Returns: Dict with success, strategy (list of probabilities), value (game value), and error """ if gurddy is None: return {"success": False, "strategy": None, "value": None, "error": "gurddy package not available"} if not isinstance(payoff_matrix, list) or len(payoff_matrix) == 0: return {"success": False, "strategy": None, "value": None, "error": "payoff_matrix must be a non-empty 2D list"} if not isinstance(player, str) or player not in ["row", "col"]: return {"success": False, "strategy": None, "value": None, "error": "player must be 'row' or 'col'"} try: from gurddy.solver.minimax_solver import MinimaxSolver solver = MinimaxSolver(None) result = solver.solve_game_matrix(payoff_matrix, player=player) return { "success": True, "strategy": result["strategy"], "value": result["value"], "error": None } except Exception as e: return {"success": False, "strategy": None, "value": None, "error": str(e)} def solve_minimax_decision(scenarios: List[Dict[str, float]], decision_vars: List[str], budget: float = 100.0, objective: str = "minimize_max_loss") -> Dict[str, Any]: """Solve a minimax decision problem under uncertainty. Args: scenarios: List of dicts mapping decision variables to coefficients (loss/gain) decision_vars: List of decision variable names budget: Total budget constraint objective: "minimize_max_loss" or "maximize_min_gain" Returns: Dict with success, decision (dict of allocations), objective_value, and error """ if gurddy is None: return {"success": False, "decision": None, "objective_value": None, "error": "gurddy package not available"} if not isinstance(scenarios, list) or len(scenarios) == 0: return {"success": False, "decision": None, "objective_value": None, "error": "scenarios must be a non-empty list"} if not isinstance(decision_vars, list) or len(decision_vars) == 0: return {"success": False, "decision": None, "objective_value": None, "error": "decision_vars must be a non-empty list"} try: from gurddy.solver.minimax_solver import MinimaxSolver solver = MinimaxSolver(None) if objective == "minimize_max_loss": result = solver.solve_minimax_decision(scenarios, decision_vars, budget=budget) return { "success": True, "decision": result["decision"], "objective_value": result["max_loss"], "objective_type": "max_loss", "error": None } elif objective == "maximize_min_gain": result = solver.solve_maximin_decision(scenarios, decision_vars, budget=budget) return { "success": True, "decision": result["decision"], "objective_value": result["min_gain"], "objective_type": "min_gain", "error": None } else: return {"success": False, "decision": None, "objective_value": None, "error": f"Unknown objective: {objective}. Use 'minimize_max_loss' or 'maximize_min_gain'"} except Exception as e: return {"success": False, "decision": None, "objective_value": None, "error": str(e)}

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/novvoo/gurddy-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server