Skip to main content
Glama

Security MCP Server

by nordeim
MCP_Server_Architecture_Design_Document.md28.4 kB
# MCP Server Architecture Design Document **Version:** 2.0 **Last Updated:** 2024 **Status:** Production-Ready ## Table of Contents 1. [Executive Summary](#executive-summary) 2. [Architecture Overview](#architecture-overview) 3. [Core Components](#core-components) 4. [Design Patterns & Principles](#design-patterns--principles) 5. [Security Architecture](#security-architecture) 6. [Reliability & Resilience](#reliability--resilience) 7. [Transport Layer](#transport-layer) 8. [Data Flow](#data-flow) 9. [Configuration System](#configuration-system) 10. [Monitoring & Observability](#monitoring--observability) 11. [Extension Points](#extension-points) 12. [Deployment Considerations](#deployment-considerations) --- ## Executive Summary The MCP (Model Context Protocol) Server is a production-ready, extensible framework for building secure, monitored network diagnostic tools accessible via dual transport mechanisms (stdio and HTTP). T[...] - **Security-first design** with multi-layered validation and sandboxing - **Resilience** through circuit breakers, rate limiting, and graceful degradation - **Observability** via comprehensive metrics and health monitoring - **Extensibility** through abstract base classes and plugin-style tool discovery - **Production readiness** with resource limits, timeout controls, and error recovery The system is designed to be integrated with AI assistants (like Claude Desktop via stdio) or accessed programmatically via HTTP APIs. --- ## Architecture Overview ### High-Level Architecture ```text ┌─────────────────────────────────────────────────────────────┐ │ Client Layer │ │ ┌──────────────┐ ┌──────────────┐ │ │ │ Claude Desktop│ │ HTTP Clients │ │ │ │ (stdio) │ │ (REST API) │ │ │ └──────┬───────┘ └──────┬──────┘ │ └─────────┼──────────────────────────────┼───────────────────┘ │ │ │ │ ┌─────────▼───────────────────────────────▼───────────────────┐ │ Transport Layer │ │ ┌──────────────┐ ┌──────────────┐ │ │ │ stdio_server │ │ FastAPI │ │ │ │ (MCP SDK) │ │ (HTTP/SSE) │ │ │ └──────┬───────┘ └──────┬──────┘ │ └─────────┼──────────────────────────────┼───────────────────┘ │ │ │ ┌─────────────────────┘ │ │ ┌─────────▼─────────▼─────────────────────────────────────────┐ │ EnhancedMCPServer (Orchestrator) │ │ ┌──────────────────────────────────────────────────────┐ │ │ │ • Tool Registry (enable/disable/discovery) │ │ │ │ • Health Manager (monitoring) │ │ │ │ • Metrics Manager (Prometheus/JSON) │ │ │ │ • Rate Limiter (token bucket) │ │ │ │ • Shutdown Coordinator (graceful cleanup) │ │ │ └──────────────────────────────────────────────────────┘ │ └──────────────────────────┬───────────────────────────────────┘ │ ┌──────────────────────────▼───────────────────────────────────┐ │ Tool Layer │ │ ┌────────────┐ ┌────────────┐ ┌────────────┐ │ │ │ NmapTool │ │ TracertTool│ │ CustomTool │ ... │ │ │ │ │ │ │ │ │ │ └─────┬──────┘ └─────┬──────┘ └─────┬──────┘ │ │ │ │ │ │ │ └───────────────┴───────────────┘ │ │ │ │ │ ┌───────────▼──────────────┐ │ │ │ MCPBaseTool (Abstract) │ │ │ │ • Input Validation │ │ │ │ • Circuit Breaker │ │ │ │ • Metrics Collection │ │ │ │ • Resource Limiting │ │ │ │ • Error Handling │ │ │ │ • Concurrency Control │ │ │ └──────────────────────────┘ │ └───────────────────────────────────────────────────────────────┘ ``` text ### Layer Responsibilities #### 1. **Client Layer** - Claude Desktop: Uses stdio transport for seamless AI integration - HTTP Clients: RESTful API for programmatic access, web UIs, monitoring #### 2. **Transport Layer** - **stdio_server**: MCP SDK-based bidirectional JSON-RPC over stdin/stdout - **FastAPI**: HTTP endpoints with SSE (Server-Sent Events) for real-time updates #### 3. **Orchestrator Layer (EnhancedMCPServer)** - Tool lifecycle management (discovery, registration, enable/disable) - Cross-cutting concerns (health, metrics, rate limiting) - Transport abstraction and routing - Graceful shutdown coordination #### 4. **Tool Layer** - Concrete implementations (NmapTool, TracertTool, etc.) - Inherit security, resilience, and observability from base class - Focus on tool-specific logic and validation --- ## Core Components ### 1. MCPBaseTool (Abstract Base Class) **Location:** `mcp_server/base_tool.py` **Purpose:** Foundation for all tools, providing production-ready infrastructure. **Key Responsibilities:** - **Input/Output Validation** via Pydantic models (v1/v2 compatible) - **Security Enforcement**: Command sanitization, argument whitelisting, metacharacter blocking - **Resource Management**: CPU, memory, file descriptor limits (Unix/Linux) - **Concurrency Control**: Per-tool semaphores with automatic cleanup - **Error Handling**: Typed errors with recovery suggestions and context - **Execution Pipeline**: Async subprocess spawning with timeout and truncation - **Metrics Integration**: Optional Prometheus metrics collection - **Circuit Breaker**: Optional failure threshold protection **State Machine:** Input Received → Validation → Semaphore Acquire → Circuit Breaker Check → Command Resolution → Argument Sanitization → Resource Limit Setup → Subprocess Spawn → Timeout Monitor → Output Capture → Metrics Recording → Error Handling → Cleanup → Output Return text **Critical Features:** 1. **Pydantic Compatibility Layer** ```python # Supports both Pydantic v1 and v2 if _PD_V2: @field_validator("target", mode='after') else: @field_validator("target") ``` Thread-Safe Semaphore Registry ```python # Per-event-loop semaphore with weak references for cleanup _semaphore_registry: Dict[str, asyncio.Semaphore] _loop_refs: weakref.WeakValueDictionary ``` Security Validation ```python # Target must be RFC1918 or .lab.internal _is_private_or_lab(value: str) -> bool # Block shell metacharacters _DENY_CHARS = re.compile(r"[;&|`$><\n\r]") ``` Resource Limits (Unix/Linux only) ```python resource.setrlimit(resource.RLIMIT_CPU, ...) resource.setrlimit(resource.RLIMIT_AS, ...) # Memory resource.setrlimit(resource.RLIMIT_NOFILE, ...) # FDs resource.setrlimit(resource.RLIMIT_CORE, (0, 0)) # No core dumps ``` Extension Points: Subclass must define: command_name, optionally allowed_flags Override _execute_tool() for custom validation/optimization Override get_tool_info() for tool-specific metadata 2. EnhancedMCPServer (Orchestrator) Location: mcp_server/server.py Purpose: Central coordinator managing tools, transports, and cross-cutting concerns. Key Responsibilities: - Tool discovery via package scanning (pkgutil) - Tool registry with enable/disable functionality - Transport abstraction (stdio vs HTTP) - Health monitoring via HealthCheckManager - Metrics aggregation via MetricsManager - Rate limiting (token bucket algorithm) - Graceful shutdown with background task cleanup - Signal handling (SIGINT, SIGTERM) Architecture Patterns: Tool Discovery Pattern ```python # Scan package for MCPBaseTool subclasses _load_tools_from_package(package_path, include, exclude) # Pattern-based exclusion EXCLUDED_PREFIXES = {'Test', 'Mock', 'Abstract', '_', 'Example'} EXCLUDED_SUFFIXES = {'Base', 'Mixin', 'Interface'} ``` Registry Pattern ```python class ToolRegistry: tools: Dict[str, MCPBaseTool] # All registered tools enabled_tools: Set[str] # Currently enabled subset ``` Health Check Integration ```python # Per-tool health checks HealthCheckManager.register_check( name=f"tool_{tool_name}", check_func=self._create_tool_health_check(tool), priority=HealthCheckPriority.INFORMATIONAL ) ``` Background Task Management ```python _background_tasks: Set[asyncio.Task] # Auto-cleanup on task completion task.add_done_callback(self._background_tasks.discard) ``` Dual Transport Support: - stdio Transport: For Claude Desktop integration - Uses MCP SDK's stdio_server() context manager - JSON-RPC over stdin/stdout - Graceful shutdown via shutdown_event - HTTP Transport: For programmatic/web access - FastAPI with CORS middleware - RESTful endpoints: /tools, /health, /metrics - SSE endpoint /events for real-time updates - Rate limiting per client IP + tool combination 3. ToolRegistry Purpose: Centralized tool management with lifecycle control. Features: - Tool registration from discovery process - Enable/disable without restart - Filter-based inclusion/exclusion (env vars) - Tool information aggregation - Metrics/circuit breaker initialization per tool API: ```python registry.get_tool(tool_name) -> Optional[MCPBaseTool] registry.get_enabled_tools() -> Dict[str, MCPBaseTool] registry.enable_tool(tool_name) registry.disable_tool(tool_name) registry.get_tool_info() -> List[Dict[str, Any]] ``` 4. RateLimiter Algorithm: Token bucket with per-client tracking Features: - Configurable rate (requests per time window) - Automatic cleanup of stale clients - Thread-safe operation (asyncio.Lock) - Client limit to prevent memory exhaustion Implementation: ```python # Token bucket: clients start with full allowance allowance: Dict[str, float] = defaultdict(lambda: rate) # Tokens regenerate over time allowance[key] += time_passed * (rate / per) # Request consumes a token if allowance[key] < 1.0: return False # Rate limited allowance[key] -= 1.0 ``` Configuration: ```python RateLimiter(rate=10, per=60.0, max_clients=1000) # 10 requests per 60 seconds, track up to 1000 clients ``` --- ## Design Patterns & Principles 1. Template Method Pattern MCPBaseTool.run() orchestrates execution while allowing subclass customization: ```python async def run(self, inp: ToolInput) -> ToolOutput: # Template method with hooks: # 1. Circuit breaker check # 2. Semaphore acquire # 3. _execute_tool() [customizable] # 4. Metrics recording # 5. Cleanup ``` 2. Strategy Pattern Transport strategies (stdio vs HTTP) are swapped at runtime: ```python if transport == "stdio": await self.run_stdio_original() elif transport == "http": await self.run_http_enhanced() ``` 3. Registry Pattern ToolRegistry centralizes tool management with runtime enable/disable. 4. Circuit Breaker Pattern Optional per-tool circuit breakers prevent cascading failures: ```python # States: CLOSED → OPEN (failures exceed threshold) → HALF_OPEN → CLOSED ``` 5. Fallback Pattern Graceful degradation when optional dependencies missing: ```python if not FASTAPI_AVAILABLE: # Fallback to stdio if MCP available # Or raise clear error with installation instructions ``` 6. Observer Pattern Health checks and metrics are observers of tool execution events. 7. Immutability for Safety ```python BASE_ALLOWED_FLAGS: Tuple[str, ...] # Immutable allowed_flags property returns new list each time ``` --- ## Security Architecture Multi-Layer Defense Layer 1: Input Validation (Pydantic Models) ```python class ToolInput(BaseModel): target: str # Validated by _is_private_or_lab() extra_args: str # Length and character class validation ``` Layer 2: Target Restriction ```python _is_private_or_lab(value: str): # RFC1918 private IPs: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16 # CIDR networks with same restrictions # .lab.internal hostnames with RFC-compliant format ``` Layer 3: Argument Sanitization ```python # Block shell metacharacters _DENY_CHARS = re.compile(r"[;&|`$><\n\r]") # Whitelist allowed tokens _TOKEN_ALLOWED = re.compile(r"^[A-Za-z0-9.:/=+,\-@%_]+$") # Flag whitelisting per tool allowed_flags: Optional[Sequence[str]] ``` Layer 4: Command Resolution ```python # Only use shutil.which() - no shell execution resolved_cmd = shutil.which(self.command_name) ``` Layer 5: Resource Sandboxing ```python # Unix resource limits RLIMIT_CPU, RLIMIT_AS (memory), RLIMIT_NOFILE, RLIMIT_CORE # Process isolation start_new_session=True # Separate process group ``` Layer 6: Policy Enforcement (Tool-Specific) ```python # NmapTool example allow_intrusive: bool # Gates -A flag and vuln scripts _validate_and_filter_scripts() # Category-based filtering ``` Security Principles - Least Privilege: Tools run with minimal permissions, resource limits - Defense in Depth: Multiple validation layers - Fail Secure: Errors block execution, don't bypass checks - Whitelist > Blacklist: Explicitly allowed flags/targets only - Immutable Defaults: Base configurations are constants - Audit Trail: Comprehensive logging of security events --- ## Reliability & Resilience Circuit Breaker Integration Purpose: Prevent cascading failures from repeated tool failures Configuration: ```python circuit_breaker_failure_threshold: int = 5 circuit_breaker_recovery_timeout: float = 120.0 circuit_breaker_expected_exception: tuple = (Exception,) ``` State Machine: text CLOSED (normal) → [5 failures] → OPEN (fail fast) → [120s timeout] → HALF_OPEN (test) → [success] → CLOSED → [failure] → OPEN Error Handling: ```python if circuit_breaker.state == OPEN: return ToolOutput(error_type=ToolErrorType.CIRCUIT_BREAKER_OPEN) ``` Timeout Management Multi-Level Timeouts: - Tool Default: default_timeout_sec (e.g., 600s for nmap) - Input Override: ToolInput.timeout_sec - Global Max: Environment variable MCP_DEFAULT_TIMEOUT_SEC Enforcement: ```python await asyncio.wait_for(proc.communicate(), timeout=timeout_sec) # On timeout: SIGKILL entire process group os.killpg(os.getpgid(proc.pid), signal.SIGKILL) ``` Concurrency Control Per-Tool Semaphores: ```python concurrency: ClassVar[int] = 2 # Max 2 concurrent executions async with self._ensure_semaphore(): # Execute tool ``` Automatic Cleanup: ```python # Weak references to event loops _loop_refs: weakref.WeakValueDictionary # Clean dead loop semaphores dead_keys = [k for k in registry if loop_id not in _loop_refs] ``` Graceful Shutdown Shutdown Sequence: - Signal Handler sets shutdown_event - Health Manager stops monitoring - Metrics Manager performs cleanup - Background Tasks cancelled with gather(return_exceptions=True) - Circuit Breakers cleanup (if implemented) - Server waits for grace period before force-stop ```python async def cleanup(self): await self.health_manager.stop_monitoring() await self.metrics_manager.cleanup() # Cancel background tasks for task in self._background_tasks: if not task.done(): task.cancel() await asyncio.gather(*tasks, return_exceptions=True) ``` Error Recovery Typed Errors with Context: ```python class ToolErrorType(Enum): TIMEOUT, NOT_FOUND, VALIDATION_ERROR, EXECUTION_ERROR, RESOURCE_EXHAUSTED, CIRCUIT_BREAKER_OPEN, UNKNOWN class ErrorContext: error_type: ToolErrorType message: str recovery_suggestion: str # Actionable guidance metadata: Dict[str, Any] ``` Example Error: ```python ErrorContext( error_type=ToolErrorType.VALIDATION_ERROR, message="Network range too large: 4096 addresses (max: 1024)", recovery_suggestion="Use /22 or smaller prefix (max 1024 hosts)", metadata={ "suggested_cidr": "/22", "example": "192.168.0.0/22" } ) ``` --- ## Transport Layer stdio Transport (MCP Protocol) Use Case: Claude Desktop integration Protocol: JSON-RPC 2.0 over stdin/stdout Registration: ```python server.register_tool( name="NmapTool", description="Network scanner", input_schema={...}, # JSON Schema handler=async_handler_function ) ``` Execution Flow: text Claude → JSON-RPC Request → stdio_server → handler → MCPBaseTool.run() → TextContent Response → Claude Response Format: ```python [TextContent(type="text", text=json.dumps(result.dict()))] ``` HTTP Transport (FastAPI) Use Case: API access, monitoring, web UIs Endpoints: ```text Endpoint Method Purpose / GET Server info, available endpoints /health GET Health checks (200/207/503) /tools GET List tools with metadata /tools/{name}/execute POST Execute tool (rate limited) /tools/{name}/enable POST Enable tool /tools/{name}/disable POST Disable tool /metrics GET Prometheus or JSON metrics /events GET SSE for real-time updates /config GET Current config (redacted) ``` Rate Limiting: ```python # Per client IP + tool combination rate_limit_key = f"{client_ip}:{tool_name}" if not await rate_limiter.check_rate_limit(rate_limit_key): raise HTTPException(status_code=429, detail={...}) ``` SSE Events: ```python # Real-time health and metrics async def event_generator(): while not disconnected: yield {"type": "health", "data": {...}} yield {"type": "metrics", "data": {...}} await asyncio.sleep(5) ``` --- ## Data Flow Typical Execution Flow text 1. CLIENT REQUEST ├─ stdio: JSON-RPC over stdin └─ HTTP: POST /tools/NmapTool/execute 2. TRANSPORT LAYER ├─ stdio: MCP handler → ToolInput └─ HTTP: FastAPI endpoint → Rate Limit → ToolInput 3. ORCHESTRATOR (EnhancedMCPServer) ├─ Tool lookup in registry ├─ Check if enabled └─ Route to tool instance 4. TOOL (e.g., NmapTool) ├─ MCPBaseTool.run(inp) │ ├─ Increment active execution counter │ ├─ Check circuit breaker state │ ├─ Acquire semaphore (concurrency control) │ └─ Call _execute_tool(inp) │ ├─ NmapTool._execute_tool(inp) │ ├─ Validate nmap-specific requirements │ ├─ Parse and validate arguments │ ├─ Optimize arguments (add smart defaults) │ └─ Call super()._execute_tool(enhanced_input) │ └─ MCPBaseTool._execute_tool(enhanced_input) ├─ Resolve command (shutil.which) ├─ Parse and sanitize arguments └─ Call _spawn(cmd, timeout) 5. SUBPROCESS EXECUTION ├─ Set resource limits (Unix) ├─ Create subprocess (start_new_session=True) ├─ Monitor with timeout ├─ Capture stdout/stderr └─ Truncate if exceeds limits 6. RESULT PROCESSING ├─ Parse output (tool-specific, e.g., nmap parser) ├─ Record metrics (success, duration, error type) ├─ Update circuit breaker state └─ Create ToolOutput with metadata 7. RESPONSE ├─ stdio: TextContent with JSON └─ HTTP: JSONResponse with ToolOutput.dict() 8. CLEANUP ├─ Decrement active execution counter ├─ Release semaphore └─ Log execution summary --- ## Configuration System Configuration Sources (Priority Order) - Environment Variables (highest priority) - Configuration File (MCP_CONFIG_FILE) - Code Defaults (lowest priority) Key Configuration Objects Assumed structure based on usage: ```python class SecurityConfig: allow_intrusive: bool = False class ToolConfig: default_timeout: float = 300.0 default_concurrency: int = 2 class CircuitBreakerConfig: failure_threshold: int = 5 recovery_timeout: float = 60.0 class ServerConfig: host: str = "0.0.0.0" port: int = 8080 class Config: security: SecurityConfig tool: ToolConfig circuit_breaker: CircuitBreakerConfig server: ServerConfig def to_dict(self, redact_sensitive=False) -> Dict ``` Environment Variables ```text Variable Default Purpose MCP_SERVER_TRANSPORT stdio stdio or http MCP_SERVER_PORT 8080 HTTP server port MCP_SERVER_HOST 0.0.0.0 HTTP server host MCP_CONFIG_FILE - Path to config file TOOLS_PACKAGE mcp_server.tools Package to scan TOOL_INCLUDE - CSV of tools to include TOOL_EXCLUDE - CSV of tools to exclude LOG_LEVEL INFO Logging level MCP_MAX_ARGS_LEN 2048 Max argument length MCP_MAX_STDOUT_BYTES 1048576 Max stdout (1MB) MCP_MAX_STDERR_BYTES 262144 Max stderr (256KB) MCP_DEFAULT_TIMEOUT_SEC 300 Default timeout MCP_DEFAULT_CONCURRENCY 2 Default concurrency MCP_MAX_MEMORY_MB 512 Memory limit MCP_MAX_FILE_DESCRIPTORS 256 FD limit ``` Configuration Application ```python def _apply_config(self): # Clamp values to safe ranges self.timeout = max(60.0, min(3600.0, config.timeout)) self.concurrency = max(1, min(5, config.concurrency)) # Log when clamped if clamped: log.info("config_clamped param=%s original=%s new=%s") ``` --- ## Monitoring & Observability Health Monitoring Architecture: ```text HealthCheckManager ├─ system_health_check (CPU, memory, disk) ├─ tool_availability_check (commands in PATH) └─ per_tool_health_checks (circuit breaker state) ``` Health States: ```python class HealthStatus(Enum): HEALTHY = "healthy" DEGRADED = "degraded" UNHEALTHY = "unhealthy" ``` Priority Levels: ```python class HealthCheckPriority(Enum): CRITICAL = 1 # System-level HIGH = 2 # Important tools MEDIUM = 3 # Optional tools LOW = 4 INFORMATIONAL = 5 # Metrics, stats ``` HTTP Response Codes: - 200: All HEALTHY - 207: Some DEGRADED (multi-status) - 503: Any UNHEALTHY Metrics Collection Prometheus Metrics: ```text mcp_tool_execution_total{tool="NmapTool",status="success"} mcp_tool_execution_duration_seconds{tool="NmapTool"} mcp_tool_active_executions{tool="NmapTool"} mcp_tool_timeouts_total{tool="NmapTool"} mcp_circuit_breaker_state{tool="NmapTool",state="open"} ``` Fallback JSON Metrics: ```json { "system": {"cpu": ..., "memory": ...}, "tools": { "NmapTool": { "executions": 150, "successes": 145, "failures": 5, "avg_duration": 12.3, "active": 2 } } } ``` Logging Strategy Structured Logging: ```python log.info("tool.start command=%s timeout=%.1f", cmd, timeout) log.error("tool.error tool=%s error_type=%s", name, error_type) ``` Log Levels: - DEBUG: Configuration, cache operations, internal state - INFO: Execution lifecycle, optimizations, state changes - WARNING: Non-fatal issues, fallbacks, deprecated usage - ERROR: Failures, exceptions, security violations - CRITICAL: System-level failures --- ## Extension Points Creating a New Tool Minimum Implementation: ```python from mcp_server.base_tool import MCPBaseTool, ToolInput, ToolOutput class MyTool(MCPBaseTool): command_name = "mytool" # Required allowed_flags = ["-flag1", "-flag2"] # Optional whitelist # Optional overrides default_timeout_sec = 300.0 concurrency = 2 circuit_breaker_failure_threshold = 5 ``` Custom Validation: ```python async def _execute_tool(self, inp: ToolInput, timeout_sec) -> ToolOutput: # 1. Custom validation if not self._my_validation(inp.target): return self._create_error_output(error_context, ...) # 2. Parse/optimize args parsed = self._parse_my_args(inp.extra_args) # 3. Call base implementation enhanced = ToolInput(target=inp.target, extra_args=parsed, ...) return await super()._execute_tool(enhanced, timeout_sec) ``` Tool-Specific Metadata: ```python def get_tool_info(self) -> Dict[str, Any]: base_info = super().get_tool_info() base_info.update({ "my_feature": "enabled", "supported_modes": ["fast", "thorough"] }) return base_info ``` Adding Custom Health Checks ```python from mcp_server.health import HealthCheck, HealthStatus, HealthCheckPriority class MyHealthCheck(HealthCheck): async def check(self) -> HealthStatus: # Custom logic if condition: return HealthStatus.HEALTHY return HealthStatus.DEGRADED # Register in server server.health_manager.add_health_check( MyHealthCheck(), priority=HealthCheckPriority.HIGH ) ``` Adding Custom Metrics ```python # Assumed MetricsManager API metrics_manager.register_counter("my_metric_total") metrics_manager.increment("my_metric_total", labels={"status": "success"}) ``` --- ## Deployment Considerations Running the Server stdio Mode (Claude Desktop): ```bash # Minimal python -m mcp_server.server # With config MCP_CONFIG_FILE=config.yaml python -m mcp_server.server # With tool filtering TOOL_INCLUDE=NmapTool,TracertTool python -m mcp_server.server ``` HTTP Mode: ```bash MCP_SERVER_TRANSPORT=http \ MCP_SERVER_PORT=8080 \ python -m mcp_server.server ``` Docker Deployment Dockerfile considerations: ```dockerfile # Install system tools (nmap, traceroute, etc.) RUN apt-get update && apt-get install -y nmap traceroute # Non-root user for security RUN useradd -m -u 1000 mcpuser USER mcpuser # Resource limits via docker-compose services: mcp-server: mem_limit: 512m cpus: 1.0 pids_limit: 100 ``` Kubernetes Deployment Resource Limits: ```yaml resources: requests: memory: "256Mi" cpu: "250m" limits: memory: "512Mi" cpu: "500m" ``` Health Probes: ```yaml livenessProbe: httpGet: path: /health port: 8080 initialDelaySeconds: 30 periodSeconds: 10 readinessProbe: httpGet: path: /health port: 8080 initialDelaySeconds: 5 periodSeconds: 5 ``` Security Considerations - Network Policies: Restrict egress to private networks only - RBAC: Limit tool execution permissions - Secrets Management: Use env vars or secret managers for sensitive config - Image Scanning: Regularly scan for vulnerabilities - Log Aggregation: Ship logs to SIEM for security monitoring - Rate Limiting: Configure per deployment size - TLS: Use reverse proxy (nginx, traefik) for HTTPS in HTTP mode Scaling Considerations Horizontal Scaling (HTTP mode): - Stateless design allows multiple replicas - Use load balancer with session affinity for SSE - Share metrics backend (Prometheus pushgateway) Vertical Scaling: - Increase concurrency per tool - Adjust resource limits - Monitor with /metrics endpoint Performance Tuning: ```python # Use uvloop for better async performance import uvloop uvloop.install() # Increase concurrency for fast tools class FastTool(MCPBaseTool): concurrency = 10 # Decrease timeout for quick scans default_timeout_sec = 60.0 ``` Appendix: Component Interaction Matrix ```text Component Depends On Depended By Purpose MCPBaseTool Pydantic, asyncio, resource All tools Base functionality EnhancedMCPServer FastAPI, MCP SDK, ToolRegistry Main entry Orchestration ToolRegistry MCPBaseTool EnhancedMCPServer Tool management RateLimiter asyncio HTTP endpoints Request throttling HealthCheckManager asyncio EnhancedMCPServer Health monitoring MetricsManager prometheus_client Tools, Server Observability NmapTool MCPBaseTool, ipaddress ToolRegistry Network scanning ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/nordeim/Security-MCP-Server-v3'

If you have feedback or need assistance with the MCP directory API, please join our Discord server