Skip to main content
Glama

Server Configuration

Describes the environment variables required to run the server.

NameRequiredDescriptionDefault

No arguments

Tools

Functions exposed to the LLM to take actions

NameDescription
load_csv

Load a CSV file into a pandas DataFrame.

Args: file_path: Path to the CSV file to load name: Optional name for the dataframe. If not provided, uses the filename without extension.

Returns: Summary of the loaded dataframe including shape, columns, and dtypes.

list_dataframes

List all currently loaded dataframes with their basic info.

Returns: Summary of all loaded dataframes.

get_dataframe_info

Get detailed information about a specific dataframe.

Args: name: Name of the dataframe to inspect

Returns: Detailed info including columns, dtypes, sample data, and statistics.

execute_code

Execute Python code for data analysis.

The code has access to:

  • All loaded dataframes by their names (e.g., 'air_quality', 'sales_data')

  • pandas as 'pd'

  • numpy as 'np'

  • matplotlib.pyplot as 'plt'

For visualizations, use plt.savefig() or the code will automatically capture any open figures as base64 PNG images.

Args: code: Python code to execute

Returns: Output from the code execution, including any print statements and base64-encoded images for any generated plots.

query_dataframe

Run a pandas query on a dataframe and return results.

This is a convenience method for simple queries. For complex analysis, use execute_code() instead.

Args: name: Name of the dataframe to query query: Pandas query string (e.g., "column > 100" or "city == 'Delhi'")

Returns: Filtered dataframe results.

describe_dataframe

Get statistical summary of a dataframe.

Args: name: Name of the dataframe columns: Optional list of specific columns to describe. If not provided, describes all numeric columns.

Returns: Statistical summary including count, mean, std, min, max, and quartiles.

unload_dataframe

Unload a dataframe from memory.

Args: name: Name of the dataframe to unload

Returns: Confirmation message.

sample_dataframe

Get a sample of rows from a dataframe.

Args: name: Name of the dataframe n: Number of rows to return (default: 10) random: If True, return random sample. If False, return first n rows.

Returns: Sample rows from the dataframe.

compare_weekday_weekend

Compare weekday vs weekend values for a metric.

Args: name: Name of the dataframe value_column: Column containing the values to compare (e.g., 'PM2.5', 'sales') date_column: Column containing dates (default: 'date') day_of_week_column: Column containing day names (default: 'day_of_week') group_by: Optional column to group by (e.g., 'city', 'station')

Returns: Comparison of weekday vs weekend averages with statistics.

compare_groups

Compare a metric across different groups (e.g., cities, categories).

Args: name: Name of the dataframe value_column: Column containing values to compare group_column: Column containing groups (e.g., 'city', 'category') groups: Optional list of specific groups to compare. If None, uses all groups.

Returns: Statistical comparison across groups.

hourly_pattern

Analyze hourly patterns in the data.

Args: name: Name of the dataframe value_column: Column containing values to analyze hour_column: Column containing hour (0-23, default: 'hour') group_by: Optional column to group by (e.g., 'city')

Returns: Hourly pattern analysis with peak/off-peak hours.

correlation_analysis

Analyze correlations between numeric columns.

Args: name: Name of the dataframe columns: Optional list of columns to analyze. If None, uses all numeric columns. target: Optional target column to show correlations with (sorted by strength).

Returns: Correlation matrix or target correlations.

trend_analysis

Analyze trends over time.

Args: name: Name of the dataframe value_column: Column containing values to analyze date_column: Column containing dates (default: 'date') period: Aggregation period - 'daily', 'weekly', 'monthly' (default: 'daily') group_by: Optional column to group by

Returns: Trend analysis with statistics.

top_bottom_analysis

Find top and bottom records by a value column.

Args: name: Name of the dataframe value_column: Column to rank by n: Number of top/bottom records (default: 5) group_by: Optional column to find top/bottom within each group

Returns: Top and bottom records.

get_column_values

Get values from a specific column.

Args: name: Name of the dataframe column: Column name unique: If True, return unique values. If False, return value counts. top_n: Limit to top N values (useful for columns with many unique values)

Returns: Column values or value counts.

plot_comparison

Create a comparison chart across groups.

Args: name: Name of the dataframe value_column: Column containing values to plot group_column: Column containing groups (e.g., 'city') chart_type: Type of chart - 'bar', 'horizontal_bar', 'box' (default: 'bar') title: Optional chart title

Returns: Base64 encoded plot image.

plot_time_series

Create a time series plot.

Args: name: Name of the dataframe value_column: Column containing values to plot date_column: Column containing dates (default: 'date') group_by: Optional column to create separate lines for each group title: Optional chart title

Returns: Base64 encoded plot image.

plot_distribution

Create a distribution histogram.

Args: name: Name of the dataframe value_column: Column containing values to plot group_by: Optional column to create overlaid distributions bins: Number of histogram bins (default: 30) title: Optional chart title

Returns: Base64 encoded plot image.

plot_hourly_pattern

Create an hourly pattern plot.

Args: name: Name of the dataframe value_column: Column containing values to plot hour_column: Column containing hour (0-23, default: 'hour') group_by: Optional column to create separate lines for each group title: Optional chart title

Returns: Base64 encoded plot image.

plot_weekday_weekend

Create a weekday vs weekend comparison bar chart.

Args: name: Name of the dataframe value_column: Column containing values to compare day_of_week_column: Column containing day names (default: 'day_of_week') group_by: Optional column to group by (e.g., 'city') title: Optional chart title

Returns: Base64 encoded plot image.

Prompts

Interactive templates invoked by user choice

NameDescription

No prompts

Resources

Contextual data attached and managed by the client

NameDescription

No resources

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/nipunbatra/vayuchat-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server