Skip to main content
Glama

MCP Media Server

by neal3000
weather_structured.py7.66 kB
""" FastMCP Weather Example with Structured Output Demonstrates how to use structured output with tools to return well-typed, validated data that clients can easily process. """ import asyncio import json import sys from dataclasses import dataclass from datetime import datetime from typing import TypedDict from pydantic import BaseModel, Field from mcp.server.fastmcp import FastMCP from mcp.shared.memory import create_connected_server_and_client_session as client_session # Create server mcp = FastMCP("Weather Service") # Example 1: Using a Pydantic model for structured output class WeatherData(BaseModel): """Structured weather data response""" temperature: float = Field(description="Temperature in Celsius") humidity: float = Field(description="Humidity percentage (0-100)") condition: str = Field(description="Weather condition (sunny, cloudy, rainy, etc.)") wind_speed: float = Field(description="Wind speed in km/h") location: str = Field(description="Location name") timestamp: datetime = Field(default_factory=datetime.now, description="Observation time") @mcp.tool() def get_weather(city: str) -> WeatherData: """Get current weather for a city with full structured data""" # In a real implementation, this would fetch from a weather API return WeatherData(temperature=22.5, humidity=65.0, condition="partly cloudy", wind_speed=12.3, location=city) # Example 2: Using TypedDict for a simpler structure class WeatherSummary(TypedDict): """Simple weather summary""" city: str temp_c: float description: str @mcp.tool() def get_weather_summary(city: str) -> WeatherSummary: """Get a brief weather summary for a city""" return WeatherSummary(city=city, temp_c=22.5, description="Partly cloudy with light breeze") # Example 3: Using dict[str, Any] for flexible schemas @mcp.tool() def get_weather_metrics(cities: list[str]) -> dict[str, dict[str, float]]: """Get weather metrics for multiple cities Returns a dictionary mapping city names to their metrics """ # Returns nested dictionaries with weather metrics return { city: {"temperature": 20.0 + i * 2, "humidity": 60.0 + i * 5, "pressure": 1013.0 + i * 0.5} for i, city in enumerate(cities) } # Example 4: Using dataclass for weather alerts @dataclass class WeatherAlert: """Weather alert information""" severity: str # "low", "medium", "high" title: str description: str affected_areas: list[str] valid_until: datetime @mcp.tool() def get_weather_alerts(region: str) -> list[WeatherAlert]: """Get active weather alerts for a region""" # In production, this would fetch real alerts if region.lower() == "california": return [ WeatherAlert( severity="high", title="Heat Wave Warning", description="Temperatures expected to exceed 40 degrees", affected_areas=["Los Angeles", "San Diego", "Riverside"], valid_until=datetime(2024, 7, 15, 18, 0), ), WeatherAlert( severity="medium", title="Air Quality Advisory", description="Poor air quality due to wildfire smoke", affected_areas=["San Francisco Bay Area"], valid_until=datetime(2024, 7, 14, 12, 0), ), ] return [] # Example 5: Returning primitives with structured output @mcp.tool() def get_temperature(city: str, unit: str = "celsius") -> float: """Get just the temperature for a city When returning primitives as structured output, the result is wrapped in {"result": value} """ base_temp = 22.5 if unit.lower() == "fahrenheit": return base_temp * 9 / 5 + 32 return base_temp # Example 6: Weather statistics with nested models class DailyStats(BaseModel): """Statistics for a single day""" high: float low: float mean: float class WeatherStats(BaseModel): """Weather statistics over a period""" location: str period_days: int temperature: DailyStats humidity: DailyStats precipitation_mm: float = Field(description="Total precipitation in millimeters") @mcp.tool() def get_weather_stats(city: str, days: int = 7) -> WeatherStats: """Get weather statistics for the past N days""" return WeatherStats( location=city, period_days=days, temperature=DailyStats(high=28.5, low=15.2, mean=21.8), humidity=DailyStats(high=85.0, low=45.0, mean=65.0), precipitation_mm=12.4, ) if __name__ == "__main__": async def test() -> None: """Test the tools by calling them through the server as a client would""" print("Testing Weather Service Tools (via MCP protocol)\n") print("=" * 80) async with client_session(mcp._mcp_server) as client: # Test get_weather result = await client.call_tool("get_weather", {"city": "London"}) print("\nWeather in London:") print(json.dumps(result.structuredContent, indent=2)) # Test get_weather_summary result = await client.call_tool("get_weather_summary", {"city": "Paris"}) print("\nWeather summary for Paris:") print(json.dumps(result.structuredContent, indent=2)) # Test get_weather_metrics result = await client.call_tool("get_weather_metrics", {"cities": ["Tokyo", "Sydney", "Mumbai"]}) print("\nWeather metrics:") print(json.dumps(result.structuredContent, indent=2)) # Test get_weather_alerts result = await client.call_tool("get_weather_alerts", {"region": "California"}) print("\nWeather alerts for California:") print(json.dumps(result.structuredContent, indent=2)) # Test get_temperature result = await client.call_tool("get_temperature", {"city": "Berlin", "unit": "fahrenheit"}) print("\nTemperature in Berlin:") print(json.dumps(result.structuredContent, indent=2)) # Test get_weather_stats result = await client.call_tool("get_weather_stats", {"city": "Seattle", "days": 30}) print("\nWeather stats for Seattle (30 days):") print(json.dumps(result.structuredContent, indent=2)) # Also show the text content for comparison print("\nText content for last result:") for content in result.content: if content.type == "text": print(content.text) async def print_schemas() -> None: """Print all tool schemas""" print("Tool Schemas for Weather Service\n") print("=" * 80) tools = await mcp.list_tools() for tool in tools: print(f"\nTool: {tool.name}") print(f"Description: {tool.description}") print("Input Schema:") print(json.dumps(tool.inputSchema, indent=2)) if tool.outputSchema: print("Output Schema:") print(json.dumps(tool.outputSchema, indent=2)) else: print("Output Schema: None (returns unstructured content)") print("-" * 80) # Check command line arguments if len(sys.argv) > 1 and sys.argv[1] == "--schemas": asyncio.run(print_schemas()) else: print("Usage:") print(" python weather_structured.py # Run tool tests") print(" python weather_structured.py --schemas # Print tool schemas") print() asyncio.run(test())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/neal3000/mcp_media_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server