Enables searching, retrieving metadata, and downloading PDFs from arXiv's repository of physics, mathematics, computer science, and other scientific preprints
Provides access to PubMed's biomedical and life sciences literature database, enabling search, metadata retrieval, and download of open access papers
Integrates with Semantic Scholar's AI-powered academic search engine to find papers across disciplines, analyze citations, evaluate paper impact, and recommend related research
Academic MCP Server
š A unified Model Context Protocol (MCP) server that provides AI assistants access to multiple academic databases through a single, consistent interface.
š Features
Supported Databases
- PubMed š„ - Biomedical and life sciences literature (NCBI) 
- bioRxiv 𧬠- Biology preprints 
- medRxiv š - Medical preprints 
- arXiv š¬ - Physics, mathematics, computer science, and more 
- Semantic Scholar š¤ - AI-powered academic search across disciplines 
Core Capabilities
- ā Unified Search: Search across all databases with a single query 
- ā Advanced Filtering: Filter by title, author, date, journal, and more 
- ā Metadata Access: Retrieve detailed paper information 
- ā PDF Download: Download open access papers when available 
- ā Deep Analysis: Generate comprehensive paper analysis prompts 
- ā Standardized Output: Consistent data format across all sources 
š Quick Start
Prerequisites
- Python 3.10+ 
- FastMCP library 
- Internet connection 
Installation
ā Already Installed! Your Academic MCP Server is fully configured and ready to use.
If you need to set it up on another machine:
- Clone or download this repository: cd Academic-MCP-Server
- Create a virtual environment: python -m venv venv
- Activate the virtual environment: - Windows: - venv\Scripts\activate
- Mac/Linux: - source venv/bin/activate
 
- Install dependencies: pip install -r requirements.txt
Note: All PubMed functionality is integrated locally. No external dependencies required!
Configuration for Cursor
This project provides TWO MCP servers with complementary features:
- academic- Basic search, metadata retrieval, and PDF downloads across 5 databases
- academic-research- Advanced features including citation analysis, paper impact evaluation, local PDF analysis, and complete research workflows
Add this configuration to your MCP settings file (~/.cursor/mcp.json or C:\Users\YOUR_USERNAME\.cursor\mcp.json):
Windows:
Mac/Linux:
Note: Replace YOUR_USERNAME and path/to with your actual paths.
š Usage
Search Papers
Search across all databases:
Search specific database:
Advanced Search
PubMed-specific advanced search:
Get Paper Metadata
Download PDF
List Available Sources
Deep Paper Analysis
š MCP Tools Reference
Server: academic (Basic Search & Retrieval)
1. search_papers
Search for papers using keywords.
Parameters:
- keywords(str): Search query
- source(str): "all", "pubmed", "biorxiv", "medrxiv", "arxiv", or "semantic_scholar"
- num_results(int): Number of results per source (default: 10)
2. search_papers_advanced
Advanced search with multiple filters.
Parameters:
- title(str, optional): Search in titles
- author(str, optional): Author name
- journal(str, optional): Journal name
- start_date(str, optional): Start date
- end_date(str, optional): End date
- term(str, optional): General search term
- source(str): Database source
- num_results(int): Number of results
3. get_paper_metadata
Get detailed metadata for a specific paper.
Parameters:
- identifier(str): Paper ID (PMID, DOI, arXiv ID, etc.)
- source(str): Database source
4. download_paper_pdf
Download PDF for a paper.
Parameters:
- identifier(str): Paper ID
- source(str): Database source
5. list_available_sources
List all available databases.
6. deep_paper_analysis
Generate comprehensive analysis prompt.
Parameters:
- identifier(str): Paper ID
- source(str): Database source
Server: academic-research (Advanced Analysis & Research)
1. analyze_citation_network
Analyze paper's citation network.
Parameters:
- paper_id(str): Paper identifier (DOI, PMID, etc.)
- source(str): Data source (default: "semantic_scholar")
- max_depth(int): Network depth 1-3 layers (default: 2)
2. evaluate_paper_impact
Evaluate academic impact of a paper.
Parameters:
- paper_id(str): Paper identifier
- source(str): Data source (default: "semantic_scholar")
3. recommend_related_papers
Recommend related papers using multiple strategies.
Parameters:
- paper_id(str): Source paper identifier
- source(str): Data source (default: "semantic_scholar")
- num_recommendations(int): Number of recommendations (default: 10)
- strategy(str): "comprehensive", "citations", "similar", or "influential"
4. research_workflow_complete
ā Recommended Core Feature - Complete research workflow: retrieve ā analyze ā read ā summarize
Parameters:
- topic(str): Research topic (e.g., "CRISPR gene editing")
- num_papers(int): Number of papers to retrieve (default: 5)
- include_analysis(bool): Include deep analysis (default: true)
- include_summary(bool): Include auto-summary (default: true)
5. analyze_local_paper
Comprehensively analyze local or online PDF papers.
Parameters:
- pdf_path(str): PDF file path (local or URL)
- include_figures(bool): Analyze figures (default: true)
- include_summary(bool): Generate summary (default: true)
6. list_all_figures
List all figures from a PDF paper.
Parameters:
- pdf_path(str): PDF file path (local or URL)
7. explain_specific_figure
Explain a specific figure from a PDF.
Parameters:
- pdf_path(str): PDF file path (local or URL)
- figure_number(int): Figure number (e.g., 1, 2, 3)
- provide_context(bool): Include context paragraphs (default: true)
š Standardized Output Format
All search results return papers in this standardized format:
Semantic Scholar results include additional fields:
- citation_count: Number of citations
- reference_count: Number of references
- fields_of_study: Research areas
š§ Architecture
Adapter Pattern
Each database is wrapped in an adapter that implements a common interface:
Adding New Databases
To add a new database:
- Create a new adapter in - adapters/
- Inherit from - BaseAdapter
- Implement all required methods 
- Register in - academic_server.py
Example:
šÆ Use Cases
For Researchers
- Search across multiple preprint servers simultaneously 
- Find papers by specific authors or topics 
- Download open access papers automatically 
- Generate literature review materials 
For AI Assistants
- Access comprehensive academic knowledge 
- Provide up-to-date research information 
- Help with citation and reference management 
- Analyze research trends and findings 
ā ļø Limitations & Notes
API Rate Limits
- PubMed: No API key required, but rate-limited 
- bioRxiv/medRxiv: No authentication required 
- arXiv: Rate-limited (1 request per 3 seconds recommended) 
- Semantic Scholar: Free tier has rate limits; get API key for higher limits at https://www.semanticscholar.org/product/api 
PDF Availability
- PubMed: Only PMC open access articles 
- bioRxiv/medRxiv: All articles are open access 
- arXiv: All articles are open access 
- Semantic Scholar: Depends on publisher policies 
Date Formats
- PubMed: - YYYY/MM/DD
- Others: - YYYY-MM-DD
š¤ Contributing
Contributions are welcome! Feel free to:
- Add new database adapters 
- Improve existing functionality 
- Fix bugs 
- Enhance documentation 
š License
This project builds upon the PubMed-MCP-Server and follows similar open-source principles.
š Acknowledgments
- PubMed-MCP-Server for the original PubMed integration 
- NCBI E-utilities 
- bioRxiv/medRxiv API 
- arXiv API 
- Semantic Scholar API 
- FastMCP framework 
š Support
For issues or questions:
- Check the documentation above 
- Review error messages in logs 
- Ensure all dependencies are installed 
- Verify your MCP configuration 
Happy researching! šš¬
This server cannot be installed
hybrid server
The server is able to function both locally and remotely, depending on the configuration or use case.
Enables AI assistants to search across multiple academic databases (PubMed, arXiv, bioRxiv, medRxiv, Semantic Scholar) through a unified interface. Supports advanced filtering, metadata retrieval, PDF downloads, and comprehensive research workflows with citation analysis.