Skip to main content
Glama
n-r-w

KnowledgeGraph MCP Server

by n-r-w
run-benchmarks.ts1.52 kB
#!/usr/bin/env node import { BenchmarkRunner } from '../tests/performance/benchmark-runner.js'; /** * Script to run performance benchmarks for the knowledge graph MCP service */ async function main() { console.log('🎯 Knowledge Graph MCP Performance Benchmarks'); console.log('='.repeat(50)); console.log(''); try { const runner = new BenchmarkRunner(); const report = await runner.runAllBenchmarks(); console.log('\n📊 Benchmark Summary'); console.log('='.repeat(30)); console.log(`Total Tests: ${report.summary.totalTests}`); console.log(`Overall Performance: ${report.summary.overallPerformance}`); console.log(''); // Display category summaries for (const [category, stats] of Object.entries(report.summary.categories)) { console.log(`${category}:`); if (stats.avgTime > 0) { console.log(` Average Time: ${stats.avgTime.toFixed(2)}ms`); console.log(` Range: ${stats.minTime.toFixed(2)}ms - ${stats.maxTime.toFixed(2)}ms`); } console.log(` Tests: ${stats.testCount}`); console.log(''); } console.log('✅ All benchmarks completed successfully!'); console.log(`📄 Detailed report saved in benchmark-reports/ directory`); } catch (error) { console.error('❌ Benchmark execution failed:', error); process.exit(1); } } // Run the benchmarks if this script is executed directly if (import.meta.url === `file://${process.argv[1]}`) { main().catch(console.error); } export { main };

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/n-r-w/knowledgegraph-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server