Skip to main content
Glama

DROMA MCP Server

A Model Context Protocol (MCP) server for DROMA (Drug Response Omics association MAp) - enabling natural language interactions with drug-omics association analysis.

Website Python 3.10+ FastMCP Version

🚀 Overview

DROMA MCP Server bridges the gap between AI assistants and cancer pharmacogenomics analysis by providing a natural language interface to the DROMA.R and DROMA.Set packages.

It is a part of DROMA project. Visit the official DROMA website for comprehensive documentation and interactive examples.

Key Features

  • 🔗 Natural Language Interface: Ask questions about drug-omics associations in plain English

  • 📊 Dataset Management: Load and manage DROMA datasets (CCLE, gCSI, etc.) in memory

  • 📈 Data Loading & Normalization: Load molecular profiles and treatment response data with automatic z-score normalization

  • 🗂️ Multi-Project Support: Seamlessly work with data across multiple research projects

  • 💾 Smart Caching: Efficient data caching with metadata tracking for faster access

  • 📤 Data Export: Export analysis results to various formats (CSV, Excel, JSON)

  • ⚡ Multi-Modal Support: Works with various transport protocols (STDIO, HTTP, SSE)

  • 🔄 R Integration: Seamless integration with existing DROMA R packages via rpy2

📦 Installation

Prerequisites

  • Python 3.10+

  • R 4.0+ with DROMA.Set and DROMA.R packages

  • DROMA SQLite database

  • FastMCP 2.13+ (automatically installed)

Install via pip

pip install droma-mcp

Development Installation

git clone https://github.com/mugpeng/DROMA_MCP cd DROMA_MCP pip install -e .

R Dependencies

Ensure you have the DROMA R packages installed:

# Install DROMA.Set and DROMA.R packages # devtools::install_github("mugpeng/DROMA_Set") # devtools::install_github("mugpeng/DROMA_R")

🚀 Quick Start

1. Start the Server

# STDIO mode (for AI assistants) - default droma-mcp run --db-path path/to/droma.sqlite # HTTP mode (for web applications) droma-mcp run --transport http --port 8000 --db-path path/to/droma.sqlite

2. MCP Client Configuration

Add to your MCP client configuration:

{ "mcpServers": { "droma-mcp": { "command": "droma-mcp", "args": ["run", "--db-path", "path/to/droma.sqlite"] } } }

🖥️ CLI Commands

Command

Description

run

Start the MCP server

test

Test configuration and dependencies

validate

Validate complete setup

export-config

Export MCP client configuration

For detailed help: droma-mcp --help or droma-mcp run --help

🛠️ Available Tools

Dataset Management

  • load_dataset: Load DROMA datasets (CCLE, gCSI, etc.) into memory from database

  • list_loaded_datasets: Show which datasets are currently loaded in memory

  • set_active_dataset: Set the active dataset for subsequent operations

  • unload_dataset: Remove datasets from memory to free up resources

Data Loading & Analysis

  • load_molecular_profiles_normalized: Load molecular profiles (mRNA, CNV, methylation, etc.) with z-score normalization

  • load_treatment_response_normalized: Load drug response data with normalization

  • load_multi_project_molecular_profiles_normalized: Load data across multiple projects

  • load_multi_project_treatment_response_normalized: Load treatment response across projects

  • check_zscore_normalization: Verify normalization status of cached data

  • get_cached_data_info: Get information about cached datasets

  • export_cached_data: Export data to CSV/Excel/JSON formats

Database Query & Exploration

  • get_droma_annotation: Retrieve sample or drug annotation data from the database

  • list_droma_samples: List all available samples for a project with filtering options

  • list_droma_features: List all available features (genes, drugs) for a project and data type

  • list_droma_projects: List all projects available in the DROMA database

Visualization & Analysis

  • plot_drug_sensitivity_rank: Create drug sensitivity rank plots

  • analyze_drug_omic_pair: Analyze associations between drugs and omic features

💬 Example Usage

Essential Workflow

⚠️ Important: Before using any data loading functions, you must first load the dataset into memory:

"Load the CCLE dataset from the database and set it as active"

"Load mRNA expression data for ABCB1 gene from the CCLE dataset with z-score normalization"

"List all projects available in the DROMA database"

"Show me all available samples for the gCSI project that have mRNA data"

🔧 Configuration

Environment Variables

  • DROMA_DB_PATH: Default path to DROMA SQLite database

  • R_LIBS: Path to R libraries

  • DROMA_MCP_MODULE: Server module to load (all, data_loading, database_query, dataset_management, visualization, analysis)

  • DROMA_MCP_VERBOSE: Enable verbose logging

🔧 Troubleshooting

Common Issues

Import Errors: Run droma-mcp validate to check dependencies

R Integration Issues: Ensure R and DROMA packages are installed correctly

Database Connection: Verify database path with droma-mcp test --db-path path/to/droma.db

For more help, see the official DROMA website or open an issue on GitHub.

🤝 Contributing

Contributions are welcome! Please see our Contributing Guidelines for details.

📄 License

This project is licensed under the MPL-2 License - see the LICENSE file for details.

📞 Support

Citation

If you use DROMA MCP in your research, please cite:

Li, S., Peng, Y., Chen, M. et al. Facilitating integrative and personalized oncology omics analysis with UCSCXenaShiny. Commun Biol 7, 1200 (2024). https://doi.org/10.1038/s42003-024-06891-2

DROMA MCP - Bridging AI and Cancer Pharmacogenomics 🧬💊🤖

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mugpeng/DROMA_MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server