Skip to main content
Glama

AGI-MCP: Advanced General Intelligence Model Context Protocol Server

License: MIT TypeScript Node.js

A comprehensive Model Context Protocol (MCP) server implementing AGI-like capabilities through the GOTCHA Framework, ATLAS Process, Thinking Mechanism, Hook System, and Subagent Architecture with integrated database memory for persistent state management.

🌟 Features

🎯 GOTCHA Framework (6-Layer Architecture)

A sophisticated cognitive architecture for agentic systems:

  1. Goals (G) - Define and manage objectives with priorities

  2. Observations (O) - Perceive and record environmental state

  3. Thoughts (T) - Reason and plan based on observations

  4. Commands (C) - Select and execute actions systematically

  5. Hypotheses (H) - Form and validate predictions

  6. Assessments (A) - Evaluate performance and capture learnings

πŸ—ΊοΈ ATLAS Process (5-Step Methodology)

Structured task execution methodology:

  1. Analyze (A) - Understand task context and complexity

  2. Task Breakdown (T) - Decompose into manageable subtasks

  3. Learn (L) - Gather necessary knowledge and resources

  4. Act (A) - Execute planned actions systematically

  5. Synthesize (S) - Integrate results and extract insights

🧠 Thinking Mechanism

Intelligent reasoning and filtering layer:

  • Prompt Evaluation - Assesses relevance and safety of user inputs

  • Tool Use Validation - Evaluates appropriateness of tool execution

  • Completion Assessment - Determines when work is truly complete

  • Purpose-Based Filtering - Aligns all actions with agent purpose

πŸ”— Hook System

Claude Code-style lifecycle hooks for customization:

  • 11 Hook Events - SessionStart, UserPromptSubmit, PreToolUse, PostToolUse, Stop, SubagentStart/Stop, and more

  • Command & Prompt Hooks - Both shell command and LLM-based evaluation

  • Decision Control - Allow, deny, or modify operations dynamically

  • Context Injection - Add information at key lifecycle points

πŸ€– Subagent System

Specialized AI assistants for focused tasks:

  • 4 Built-in Subagents - Explore, General-Purpose, Task-Executor, Code-Reviewer

  • Custom Subagents - Create project or user-level specialists

  • Isolated Contexts - Each subagent has its own memory and permissions

  • Tool Restrictions - Fine-grained control over subagent capabilities

  • Resumable Sessions - Continue previous subagent work

πŸ’Ύ Database Integration

Persistent memory as source of truth:

  • SQLite Database - All operations persisted

  • Session Tracking - Complete history and analytics

  • ATLAS History - Full execution traces

  • Query Optimization - Indexed for performance

πŸ—οΈ Memory Infrastructure

Automatic initialization and management:

  • Auto-Detection - Checks for existing infrastructure

  • Directory Creation - memory/logs and data structures

  • Schema Initialization - Database setup on first run

  • Logging System - Comprehensive session logs

πŸ“¦ Installation

Standard Installation

# Clone the repository git clone https://github.com/muah1987/AGI-MCP.git cd AGI-MCP # Install dependencies npm install # Build the project npm run build # Run tests npm test

Docker Installation

# Option 1: Pull from Docker Hub (recommended) docker pull muah1987/agi-mcp:latest # Option 2: Build locally docker build -t agi-mcp:latest . # Option 3: Use docker-compose docker-compose build # Run the test script to validate the build ./test-docker.sh

Publishing to Docker Hub

# 1. Create .env file with your credentials cp .env.example .env # Edit .env and add your DOCKER_USERNAME and DOCKER_TOKEN # 2. Build and push to Docker Hub ./push-docker.sh

πŸš€ Quick Start

As MCP Server (Native)

Add to your MCP client configuration (e.g., Claude Desktop, Cline):

{ "mcpServers": { "agi-mcp": { "command": "node", "args": ["/absolute/path/to/AGI-MCP/dist/index.js"] } } }

As MCP Server (Docker)

Using Docker for isolated deployment:

{ "mcpServers": { "agi-mcp": { "command": "docker", "args": ["run", "-i", "--rm", "muah1987/agi-mcp:latest"] } } }

Or using locally built image:

{ "mcpServers": { "agi-mcp": { "command": "docker", "args": ["run", "-i", "--rm", "agi-mcp:latest"] } } }

Direct Execution

# Native npm start # Docker docker run -i agi-mcp:latest # Docker Compose docker-compose up

First Session

On first run, AGI-MCP automatically:

  1. Creates memory/MEMORY.md documentation

  2. Sets up memory/logs/ directory

  3. Creates data/ directory

  4. Initializes SQLite database

  5. Loads all subagents

  6. Configures hook system

πŸ› οΈ Available Tools

GOTCHA Framework (7 tools)

  • set_goal - Define system objectives

  • observe - Record environmental observations

  • think - Capture reasoning processes

  • execute_command - Execute and log commands

  • form_hypothesis - Create predictions

  • assess_performance - Evaluate and learn

  • process_goal_with_gotcha - Full cycle processing

ATLAS Process (2 tools)

  • execute_atlas_task - Run complete 5-step process

  • get_atlas_history - View task execution history

Memory Management (3 tools)

  • get_active_goals - List active objectives

  • get_memory - Query memory by layer

  • get_session_summary - Session overview

Subagent Management (3 tools)

  • execute_subagent - Delegate to specialist

  • resume_subagent - Continue previous work

  • list_subagents - View available subagents

πŸ“š Documentation

Core Documentation

Technical Documentation (docs/)

πŸ—οΈ Architecture

AGI-MCP/ β”œβ”€β”€ src/ β”‚ β”œβ”€β”€ index.ts # Main MCP server β”‚ β”œβ”€β”€ database/ β”‚ β”‚ β”œβ”€β”€ memory-db.ts # SQLite operations β”‚ β”‚ └── infrastructure.ts # Auto-initialization β”‚ β”œβ”€β”€ gotcha/ β”‚ β”‚ β”œβ”€β”€ framework.ts # GOTCHA 6-layer system β”‚ β”‚ └── thinking.ts # Thinking mechanism β”‚ β”œβ”€β”€ atlas/ β”‚ β”‚ └── process.ts # ATLAS 5-step process β”‚ β”œβ”€β”€ hooks/ β”‚ β”‚ └── hook-system.ts # Lifecycle hooks β”‚ β”œβ”€β”€ subagents/ β”‚ β”‚ └── subagent-system.ts # Subagent management β”‚ └── tools/ β”‚ └── mcp-tools.ts # MCP tool definitions β”œβ”€β”€ memory/ # Memory system β”‚ β”œβ”€β”€ MEMORY.md # Documentation β”‚ └── logs/ # Session logs β”œβ”€β”€ data/ # Database storage β”‚ └── agi-mcp.db # SQLite database └── .agi-mcp/ # Configuration β”œβ”€β”€ hooks/ # Hook scripts β”œβ”€β”€ subagents/ # Custom subagents └── hooks-config.json # Hook configuration

πŸ’‘ Examples

Execute ATLAS Task

await tools.handleToolCall('execute_atlas_task', { task_id: 'research-001', description: 'Research quantum computing applications' });

Use Subagent

await tools.handleToolCall('execute_subagent', { subagent: 'code-reviewer', task: 'Review authentication module for security' });

Configure Hook

{ "hooks": { "PreToolUse": [{ "matcher": "execute_command", "hooks": [{ "type": "command", "command": "./validate-command.sh" }] }] } }

πŸ§ͺ Testing

# Run all tests npm test # Build project npm run build

🀝 Contributing

Contributions are welcome! See CONTRIBUTING.md for guidelines.

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ”’ Security

See SECURITY.md for security policies and reporting vulnerabilities.

πŸ“ Changelog

See CHANGELOG.md for version history and changes.

πŸ™ Acknowledgments

  • Model Context Protocol by Anthropic

  • Inspired by AGI principles and cognitive architectures

  • Built with TypeScript and SQLite

πŸ“§ Support


AGI-MCP - Building towards Artificial General Intelligence through Model Context Protocol

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/muah1987/AGI-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server