Contentful Delivery MCP Server
by mshaaban0
# Contentful Delivery MCP Server
A Model Context Protocol (MCP) server that provides seamless access to Contentful's Delivery API through AI assistants. Query and retrieve content entries, assets, and content types using natural language.
<a href="https://glama.ai/mcp/servers/v84ui258n5">
<img width="380" height="200" src="https://glama.ai/mcp/servers/v84ui258n5/badge" alt="Contentful Delivery Server MCP server" />
</a>
## Quick Start
Install the package in your project:
```bash
npm install @mshaaban0/contentful-delivery-mcp-server
```
Or globally:
```bash
npm install -g @mshaaban0/contentful-delivery-mcp-server
```
Set up your Contentful credentials:
```bash
export CONTENTFUL_SPACE_ID="your_space_id"
export CONTENTFUL_ACCESS_TOKEN="your_access_token"
```
## Features
- Natural language queries to search content
- Retrieve entries by ID or content type
- Asset management
- Content type schema access
- Pagination support
- Rich text content handling
### Available Tools
- `query_entries` - Natural language search across all content
- `get_entry` - Fetch specific entry by ID
- `get_entries` - List entries with filtering
- `get_assets` - Browse all assets
- `get_asset` - Get asset details by ID
- `get_content_type` - View content type schema
- `get_content_types` - List available content types
## Integration with Mastra AI
[Mastra AI](https://mastra.ai) provides seamless integration with this MCP server. Here's how to set it up:
```typescript
import { MastraMCPClient } from "@mastra/mcp";
import { Agent } from "@mastra/core/agent";
// Initialize the MCP client
const contentfulClient = new MastraMCPClient({
name: "contentful-delivery",
server: {
command: "npx",
args: ["-y", "@mshaaban0/contentful-delivery-mcp-server@latest"],
env: {
CONTENTFUL_ACCESS_TOKEN: "your_access_token",
CONTENTFUL_SPACE_ID: "your_space_id"
}
}
});
// Create an AI agent with access to Contentful
const assistant = new Agent({
name: "Content Assistant",
instructions: `
You are a helpful assistant with access to our content database.
Use the available tools to find and provide accurate information.
`,
model: "gpt-4",
});
// Connect and register tools
await contentfulClient.connect();
const tools = await contentfulClient.tools();
assistant.__setTools(tools);
// Example usage
const response = await assistant.chat("Find articles about machine learning");
```
## Development
```bash
# Clone the repo
git clone https://github.com/mshaaban0/contentful-delivery-mcp-server.git
# Install dependencies
npm install
# Build
npm run build
# Development with auto-rebuild
npm run watch
# Run the inspector
npm run inspector
```
## Debugging
The MCP Inspector provides a web interface for debugging:
```bash
npm run inspector
```
Visit the provided URL to access the debugging tools.
## Resources
- [Mastra AI Documentation](https://mastra.ai/docs)
- [Contentful API Reference](https://www.contentful.com/developers/docs/references/)
- [MCP Specification](https://github.com/anthropic-labs/model-context-protocol)
## License
MIT