Skip to main content
Glama
diagnostics.py962 B
from __future__ import annotations from typing import Dict, List from ...schemas import LPModel, SolveOptions from .simplex import solve_lp def analyze_infeasibility(model: LPModel) -> Dict[str, object]: options = SolveOptions(return_duals=False) base_solution = solve_lp(model, options) if base_solution.status != "infeasible": return { "status": base_solution.status, "message": base_solution.message or "Model is not infeasible", "conflicts": [], } conflicts: List[str] = [] for idx, cons in enumerate(model.constraints): relaxed = model.model_copy(deep=True) relaxed.constraints.pop(idx) result = solve_lp(relaxed, options) if result.status != "infeasible": conflicts.append(cons.name) return { "status": "infeasible", "message": "Identified candidate conflicting constraints", "conflicts": conflicts, }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mrugankpednekar/mcp-optimizer'

If you have feedback or need assistance with the MCP directory API, please join our Discord server