Skip to main content
Glama
agents.py1.41 kB
from __future__ import annotations from crewai import Agent from .tools import ( InfeasibilityAnalysisTool, NaturalLanguageParserTool, SolveLPTool, SolveMIPTool, ) def lp_agent(verbose: bool = False) -> Agent: return Agent( name="LP Specialist", role="Linear programming solver", goal="Solve linear programs accurately and report dual information", backstory="A veteran operations researcher fluent in simplex and dual analysis.", tools=[SolveLPTool(), InfeasibilityAnalysisTool()], verbose=verbose, ) def mip_agent(verbose: bool = False) -> Agent: return Agent( name="MILP Strategist", role="Mixed-integer optimisation analyst", goal="Find high-quality integer solutions using branch and bound or OR-Tools", backstory="Specialises in discrete optimisation with pragmatic heuristics.", tools=[SolveMIPTool(), InfeasibilityAnalysisTool()], verbose=verbose, ) def parser_agent(verbose: bool = False) -> Agent: return Agent( name="Formulation Assistant", role="Translates natural language problem statements into structured LP JSON", goal="Produce well-formed LP models ready for solving", backstory="Enjoys turning ambiguous briefs into precise mathematical models.", tools=[NaturalLanguageParserTool()], verbose=verbose, )

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mrugankpednekar/mcp-optimizer'

If you have feedback or need assistance with the MCP directory API, please join our Discord server