ReviewWebsite MCP Server

MIT License
27
2

Integrations

  • Connects to the ReviewWebsite.com API hosted on GitHub, enabling AI assistants to create, read, update, and delete website reviews, as well as extract and process website content.

  • Converts URLs to Markdown format using AI models, allowing for structured representation of website content that can be used in reviews and other applications.

  • Provides access to the ReviewWebsite.com API, allowing AI assistants to create and manage website reviews, extract data from URLs, convert URLs to markdown, scrape content, extract links, and summarize websites.

ReviewWebsite.com - MCP Server

This project provides a Model Context Protocol (MCP) server that connects AI assistants to ReviewWebsite.com API to create and manage website reviews, extract data, convert URLs to markdown, and more.

Available Features

  • Create, read, update, and delete website reviews
  • Get available AI models
  • Convert URLs to Markdown using AI
  • Extract structured data from URLs using AI
  • Scrape URLs and extract content
  • Extract links from websites
  • Summarize URLs and websites using AI
  • Customize AI models and parameters
  • Control wait behavior and timing

ReviewWeb.site

Supported Transports

  • "stdio" transport - Default transport for CLI usage
  • "Streamable HTTP" transport - For web-based clients
    • Implement auth ("Authorization" headers with Bearer <token>)
  • "sse" transport (Deprecated)
  • Write tests

How to use

CLI

# Get available AI models npm run dev:cli -- get-ai-models --api-key "your-api-key" # Create a new review npm run dev:cli -- create-review --url "https://example.com" --instructions "Review this website" --api-key "your-api-key" # Get a specific review by ID npm run dev:cli -- get-review --review-id "review-id" --api-key "your-api-key" # List all reviews npm run dev:cli -- list-reviews --page 1 --limit 10 --api-key "your-api-key" # Update a review npm run dev:cli -- update-review --review-id "review-id" --url "https://example.com" --instructions "Updated instructions" --api-key "your-api-key" # Delete a review npm run dev:cli -- delete-review --review-id "review-id" --api-key "your-api-key" # Convert URL to Markdown npm run dev:cli -- convert-to-markdown --url "https://example.com" --model "gpt-4o" --api-key "your-api-key" # Extract structured data from URL npm run dev:cli -- extract-data --url "https://example.com" --instructions "Extract product information" --api-key "your-api-key" # Scrape URL npm run dev:cli -- scrape-url --url "https://example.com" --api-key "your-api-key" # Extract links from URL npm run dev:cli -- extract-links --url "https://example.com" --type "all" --api-key "your-api-key" # Summarize URL npm run dev:cli -- summarize-url --url "https://example.com" --model "gpt-4o" --api-key "your-api-key"

MCP Setup

For local configuration with stdio transport:

{ "mcpServers": { "reviewwebsite": { "command": "node", "args": ["/path/to/reviewwebsite-mcp-server/dist/index.js"], "transportType": "stdio" } } }

For remote HTTP configuration:

{ "mcpServers": { "reviewwebsite": { "type": "http", "url": "http://localhost:8080/mcp" } } }

Environment Variables for HTTP Transport:

You can configure the HTTP server using these environment variables:

  • MCP_HTTP_HOST: The host to bind to (default: 127.0.0.1)
  • MCP_HTTP_PORT: The port to listen on (default: 8080)
  • MCP_HTTP_PATH: The endpoint path (default: /mcp)

Source Code Overview

What is MCP?

Model Context Protocol (MCP) is an open standard that allows AI systems to securely and contextually connect with external tools and data sources.

This boilerplate implements the MCP specification with a clean, layered architecture that can be extended to build custom MCP servers for any API or data source.

Why Use This Boilerplate?

  • Production-Ready Architecture: Follows the same pattern used in published MCP servers, with clear separation between CLI, tools, controllers, and services.
  • Type Safety: Built with TypeScript for improved developer experience, code quality, and maintainability.
  • Working Example: Includes a fully implemented IP lookup tool demonstrating the complete pattern from CLI to API integration.
  • Testing Framework: Comes with testing infrastructure for both unit and CLI integration tests, including coverage reporting.
  • Development Tooling: Includes ESLint, Prettier, TypeScript, and other quality tools preconfigured for MCP server development.

Getting Started

Prerequisites

  • Node.js (>=18.x): Download
  • Git: For version control

Step 1: Clone and Install

# Clone the repository git clone https://github.com/mrgoonie/reviewwebsite-mcp-server.git cd reviewwebsite-mcp-server # Install dependencies npm install

Step 2: Run Development Server

Start the server in development mode with stdio transport (default):

npm run dev:server

Or with the Streamable HTTP transport:

npm run dev:server:http

This starts the MCP server with hot-reloading and enables the MCP Inspector at http://localhost:5173.

⚙️ Proxy server listening on port 6277 🔍 MCP Inspector is up and running at http://127.0.0.1:6274

When using HTTP transport, the server will be available at http://127.0.0.1:8080/mcp by default.


Step 3: Test the ReviewWebsite API Tools

Use the ReviewWebsite API tools via CLI:

# Get available AI models npm run dev:cli -- get-ai-models --api-key "your-api-key" # Create a review npm run dev:cli -- create-review --url "https://example.com" --instructions "Review this website" --api-key "your-api-key" # Convert URL to Markdown npm run dev:cli -- convert-to-markdown --url "https://example.com" --model "gpt-4o" --api-key "your-api-key"

Architecture

This boilerplate follows a clean, layered architecture pattern that separates concerns and promotes maintainability.

Project Structure

src/ ├── cli/ # Command-line interfaces ├── controllers/ # Business logic ├── resources/ # MCP resources: expose data and content from your servers to LLMs ├── services/ # External API interactions ├── tools/ # MCP tool definitions ├── types/ # Type definitions ├── utils/ # Shared utilities └── index.ts # Entry point

Layers and Responsibilities

CLI Layer (src/cli/*.cli.ts)

  • Purpose: Define command-line interfaces that parse arguments and call controllers
  • Naming: Files should be named <feature>.cli.ts
  • Testing: CLI integration tests in <feature>.cli.test.ts

Tools Layer (src/tools/*.tool.ts)

  • Purpose: Define MCP tools with schemas and descriptions for AI assistants
  • Naming: Files should be named <feature>.tool.ts with types in <feature>.types.ts
  • Pattern: Each tool should use zod for argument validation

Controllers Layer (src/controllers/*.controller.ts)

  • Purpose: Implement business logic, handle errors, and format responses
  • Naming: Files should be named <feature>.controller.ts
  • Pattern: Should return standardized ControllerResponse objects

Services Layer (src/services/*.service.ts)

  • Purpose: Interact with external APIs or data sources
  • Naming: Files should be named <feature>.service.ts
  • Pattern: Pure API interactions with minimal logic

Utils Layer (src/utils/*.util.ts)

  • Purpose: Provide shared functionality across the application
  • Key Utils:
    • logger.util.ts: Structured logging
    • error.util.ts: Error handling and standardization
    • formatter.util.ts: Markdown formatting helpers

Development Guide

Development Scripts

# Start server in development mode (hot-reload & inspector) npm run dev:server # Run CLI in development mode npm run dev:cli -- [command] [args] # Build the project npm run build # Start server in production mode npm run start:server # Run CLI in production mode npm run start:cli -- [command] [args]

Testing

# Run all tests npm test # Run specific tests npm test -- src/path/to/test.ts # Generate test coverage report npm run test:coverage

Code Quality

# Lint code npm run lint # Format code with Prettier npm run format # Check types npm run typecheck

Building Custom Tools

Follow these steps to add your own tools to the server:

1. Define Service Layer

Create a new service in src/services/ to interact with your external API:

// src/services/example.service.ts import { Logger } from '../utils/logger.util.js'; const logger = Logger.forContext('services/example.service.ts'); export async function getData(param: string): Promise<any> { logger.debug('Getting data', { param }); // API interaction code here return { result: 'example data' }; }

2. Create Controller

Add a controller in src/controllers/ to handle business logic:

// src/controllers/example.controller.ts import { Logger } from '../utils/logger.util.js'; import * as exampleService from '../services/example.service.js'; import { formatMarkdown } from '../utils/formatter.util.js'; import { handleControllerError } from '../utils/error-handler.util.js'; import { ControllerResponse } from '../types/common.types.js'; const logger = Logger.forContext('controllers/example.controller.ts'); export interface GetDataOptions { param?: string; } export async function getData( options: GetDataOptions = {}, ): Promise<ControllerResponse> { try { logger.debug('Getting data with options', options); const data = await exampleService.getData(options.param || 'default'); const content = formatMarkdown(data); return { content }; } catch (error) { throw handleControllerError(error, { entityType: 'ExampleData', operation: 'getData', source: 'controllers/example.controller.ts', }); } }

3. Implement MCP Tool

Create a tool definition in src/tools/:

// src/tools/example.tool.ts import { McpServer } from '@modelcontextprotocol/sdk/server/mcp.js'; import { z } from 'zod'; import { Logger } from '../utils/logger.util.js'; import { formatErrorForMcpTool } from '../utils/error.util.js'; import * as exampleController from '../controllers/example.controller.js'; const logger = Logger.forContext('tools/example.tool.ts'); const GetDataArgs = z.object({ param: z.string().optional().describe('Optional parameter'), }); type GetDataArgsType = z.infer<typeof GetDataArgs>; async function handleGetData(args: GetDataArgsType) { try { logger.debug('Tool get_data called', args); const result = await exampleController.getData({ param: args.param, }); return { content: [{ type: 'text' as const, text: result.content }], }; } catch (error) { logger.error('Tool get_data failed', error); return formatErrorForMcpTool(error); } } export function register(server: McpServer) { server.tool( 'get_data', `Gets data from the example API, optionally using \`param\`. Use this to fetch example data. Returns formatted data as Markdown.`, GetDataArgs.shape, handleGetData, ); }

4. Add CLI Support

Create a CLI command in src/cli/:

// src/cli/example.cli.ts import { program } from 'commander'; import { Logger } from '../utils/logger.util.js'; import * as exampleController from '../controllers/example.controller.js'; import { handleCliError } from '../utils/error-handler.util.js'; const logger = Logger.forContext('cli/example.cli.ts'); program .command('get-data') .description('Get example data') .option('--param <value>', 'Optional parameter') .action(async (options) => { try { logger.debug('CLI get-data called', options); const result = await exampleController.getData({ param: options.param, }); console.log(result.content); } catch (error) { handleCliError(error); } });

5. Register Components

Update the entry points to register your new components:

// In src/cli/index.ts import '../cli/example.cli.js'; // In src/index.ts (for the tool) import exampleTool from './tools/example.tool.js'; // Then in registerTools function: exampleTool.register(server);

Debugging Tools

MCP Inspector

Access the visual MCP Inspector to test your tools and view request/response details:

  1. Run npm run dev:server
  2. Open http://localhost:5173 in your browser
  3. Test your tools and view logs directly in the UI

Server Logs

Enable debug logs for development:

# Set environment variable DEBUG=true npm run dev:server # Or configure in ~/.mcp/configs.json

Publishing Your MCP Server

When ready to publish your custom MCP server:

  1. Update package.json with your details
  2. Update README.md with your tool documentation
  3. Build the project: npm run build
  4. Test the production build: npm run start:server
  5. Publish to npm: npm publish

License

MIT License

{ "reviewwebsite": { "environments": { "DEBUG": "true", "REVIEWWEBSITE_API_KEY": "your-api-key-here" } } }

Note: For backward compatibility, the server will also recognize configurations under the full package name (reviewwebsite-mcp-server) or the unscoped package name (reviewwebsite-mcp-server) if the reviewwebsite key is not found. However, using the short reviewwebsite key is recommended for new configurations.

Related MCP Servers

  • -
    security
    A
    license
    -
    quality
    An MCP server that helps AI assistants access text content from websites that implement bot detection, bridging the gap between what you can see in your browser and what the AI can access.
    Last updated -
    1
    Python
    Apache 2.0
  • -
    security
    -
    license
    -
    quality
    A specialized MCP server that enables AI agents to interact with Reddit, including reading posts, creating content, and managing subreddit configurations.
    Last updated -
    31
    1
    TypeScript
  • -
    security
    F
    license
    -
    quality
    A MCP server that allows AI assistants to interact with the browser, including getting page content as markdown, modifying page styles, and searching browser history.
    Last updated -
    5
    TypeScript
  • -
    security
    F
    license
    -
    quality
    An MCP server that crawls API documentation websites and exposes their content to AI models, enabling them to search, browse, and reference API specifications.
    Last updated -
    Python

View all related MCP servers

ID: hww6ztx29c