Skip to main content
Glama

YouTube MCP Server

A powerful Model Context Protocol (MCP) server for YouTube video transcription and metadata extraction. This server provides advanced tools for AI agents to retrieve video metadata and generate high-quality transcriptions with native language support.

🌟 Features

  • Metadata Extraction: Retrieve comprehensive video details (title, description, views, duration, etc.) without downloading the video.

  • Smart Transcription:

    • In-Memory Processing: fast, efficient, and disk-I/O free pipeline.

    • VAD (Voice Activity Detection): uses Silero VAD for precise segmentation.

    • Multilingual Support: supports 99 languages.

    • Translation: Transcribe to any supported language.

  • Caching: Intelligent file-based caching to avoid redundant processing.

  • Optimized Performance:

    • Uses yt-dlp for robust extraction.

    • Hardware acceleration (MPS/CUDA) for Whisper inference.

    • Parallel processing for transcription segments.


🛠️ Prerequisites

  • Python 3.10+

  • ffmpeg: Required for audio processing.

    • Mac: brew install ffmpeg

    • Linux: sudo apt install ffmpeg

    • Windows: Download and add to PATH.

📦 Installation

  1. Clone the repository:

    git clone https://github.com/mourad-ghafiri/youtube-mcp-server cd youtube-mcp-server
  2. Install dependencies: Using uv (recommended):

    uv sync

⚙️ Configuration

The server configuration is located in src/youtube_mcp_server/config.py. You can adjust the following parameters:

Directories

  • TRANSCRIPTIONS_DIR: Directory where transcription JSON files are cached (default: "transcriptions").

Models

  • WHISPER_MODEL_NAME: OpenAI Whisper model to use. Options: "tiny", "base", "small", "medium", "large", "turbo". (default: "tiny").

    Note: Larger models require more RAM and a GPU (CUDA/MPS).

  • SILERO_REPO: VAD model repository and ID.

Audio Processing

  • SAMPLING_RATE: Audio sampling rate for Whisper/VAD (default: 16000 Hz).

  • SEGMENT_PADDING_MS: Padding added to each audio segment to avoid cutting off words (default: 200 ms).

Concurrency

  • MAX_WORKERS: Number of parallel threads for transcribing audio segments (default: 4). Increasing this speeds up transcription but uses more CPU/Memory.

🚀 Usage

1. Start the Server

uv run main.py

The server runs on SSE (Server-Sent Events) transport at

2. Configure MCP Client

Add the server configuration to your MCP client:

{ "mcpServers": { "youtube": { "url": "http://127.0.0.1:8000/sse" } } }

🛠️ Tools Reference

get_video_info

Retrieves metadata for a given YouTube video.

  • Input: url (string)

  • Output: JSON object with title, views, description, thumbnails, etc.

    { "id": "VIDEO_ID", "title": "Video Title", "description": "Video description...", "view_count": 1000000, "duration": 212, "uploader": "Channel Name", "upload_date": "20091025", "thumbnail": "https://i.ytimg.com/...", "tags": ["tag1", "tag2"], "categories": ["Music"] }

transcribe_video

Transcribes a video with optional translation.

  • Inputs:

    • url (string): Video URL.

    • language (string, default="auto"):

      • "auto": Transcribe in detected language.

      • "en": Translate to English.

      • "fr", "es", etc.: Transcribe in specific language.

  • Output: JSON with segments and metadata.

    { "id": "VIDEO_ID", "title": "Video Title", "duration": 212, "transcription": [ { "from": "00:00:00", "to": "00:00:05", "transcription": "First segment text..." }, { "from": "00:00:05", "to": "00:00:10", "transcription": "Second segment text..." } ] }

🏗️ Technical Architecture

  • Services: DownloadService, VADService (Silero), WhisperService (OpenAI), CacheService.

  • In-Memory Pipeline: Audio is downloaded -> loaded to RAM -> segmented by VAD -> transcribed by Whisper -> Cached.

  • Concurrency: Parallel segment transcription.

🌍 Appendix: Supported Languages

Country (Primary/Region)

Language

Code

South Africa

Afrikaans

af

Ethiopia

Amharic

am

Arab World

Arabic

ar

India

Assamese

as

Azerbaijan

Azerbaijani

az

Russia

Bashkir

ba

Belarus

Belarusian

be

Bulgaria

Bulgarian

bg

Bangladesh

Bengali

bn

Tibet

Tibetan

bo

France (Brittany)

Breton

br

Bosnia and Herzegovina

Bosnian

bs

Spain (Catalonia)

Catalan

ca

Czech Republic

Czech

cs

Wales

Welsh

cy

Denmark

Danish

da

Germany

German

de

Greece

Greek

el

USA / UK

English

en

Spain

Spanish

es

Estonia

Estonian

et

Spain (Basque)

Basque

eu

Iran

Persian

fa

Finland

Finnish

fi

Faroe Islands

Faroese

fo

France

French

fr

Spain (Galicia)

Galician

gl

India

Gujarati

gu

Nigeria

Hausa

ha

Hawaii

Hawaiian

haw

Israel

Hebrew

he

India

Hindi

hi

Croatia

Croatian

hr

Haiti

Haitian Creole

ht

Hungary

Hungarian

hu

Armenia

Armenian

hy

Indonesia

Indonesian

id

Iceland

Icelandic

is

Italy

Italian

it

Japan

Japanese

ja

Indonesia (Java)

Javanese

jw

Georgia

Georgian

ka

Kazakhstan

Kazakh

kk

Cambodia

Khmer

km

India

Kannada

kn

South Korea

Korean

ko

Ancient Rome

Latin

la

Luxembourg

Luxembourgish

lb

Congo

Lingala

ln

Laos

Lao

lo

Lithuania

Lithuanian

lt

Latvia

Latvian

lv

Madagascar

Malagasy

mg

New Zealand

Maori

mi

North Macedonia

Macedonian

mk

India

Malayalam

ml

Mongolia

Mongolian

mn

India

Marathi

mr

Malaysia

Malay

ms

Malta

Maltese

mt

Myanmar

Myanmar

my

Nepal

Nepali

ne

Netherlands

Dutch

nl

Norway

Nynorsk

nn

Norway

Norwegian

no

France (Occitania)

Occitan

oc

India (Punjab)

Punjabi

pa

Poland

Polish

pl

Afghanistan

Pashto

ps

Portugal / Brazil

Portuguese

pt

Romania

Romanian

ro

Russia

Russian

ru

India

Sanskrit

sa

Pakistan

Sindhi

sd

Sri Lanka

Sinhala

si

Slovakia

Slovak

sk

Slovenia

Slovenian

sl

Zimbabwe

Shona

sn

Somalia

Somali

so

Albania

Albanian

sq

Serbia

Serbian

sr

Indonesia

Sundanese

su

Sweden

Swedish

sv

East Africa

Swahili

sw

India

Tamil

ta

India

Telugu

te

Tajikistan

Tajik

tg

Thailand

Thai

th

Turkmenistan

Turkmen

tk

Philippines

Tagalog

tl

Turkey

Turkish

tr

Russia (Tatarstan)

Tatar

tt

Ukraine

Ukrainian

uk

Pakistan

Urdu

ur

Uzbekistan

Uzbek

uz

Vietnam

Vietnamese

vi

Ashkenazi Jewish

Yiddish

yi

Nigeria

Yoruba

yo

China (Guangdong)

Cantonese

yue

China

Chinese

zh

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the project

  2. Create your feature branch (git checkout -b feature/AmazingFeature)

  3. Commit your changes (git commit -m 'Add some AmazingFeature')

  4. Push to the branch (git push origin feature/AmazingFeature)

  5. Open a Pull Request

📄 License

Distributed under the MIT License. See LICENSE for more information.


-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mourad-ghafiri/youtube-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server