Skip to main content
Glama

Process Mining MCP Server

by mostapow
n8n_workflow.json11 kB
{ "name": "Workflow", "nodes": [ { "parameters": { "model": { "__rl": true, "value": "gpt-4o", "mode": "list", "cachedResultName": "gpt-4o" }, "options": {} }, "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi", "typeVersion": 1.2, "position": [ 80, 200 ], "id": "e79871af-0489-4617-9f1f-f77c1c09591a", "name": "OpenAI Chat Model", "credentials": { "openAiApi": { "id": "QZsZLrpuqJfzohud", "name": "OpenAi account" } } }, { "parameters": { "sessionIdType": "customKey", "sessionKey": "\"test-session\"" }, "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow", "typeVersion": 1.3, "position": [ 240, 200 ], "id": "b9f1fedc-1b3a-4de7-9f4e-f21dd1a762cc", "name": "Simple Memory" }, { "parameters": { "rule": { "interval": [ { "field": "seconds", "secondsInterval": 10 } ] } }, "type": "n8n-nodes-base.scheduleTrigger", "typeVersion": 1.2, "position": [ 20, 0 ], "id": "c3aa9fef-f5a7-4a5e-95f5-d05042bebe11", "name": "Schedule Trigger" }, { "parameters": { "conditions": { "options": { "caseSensitive": true, "leftValue": "", "typeValidation": "loose", "version": 2 }, "conditions": [ { "id": "69e7b5ea-2f89-4bcb-be95-c6056e4f62a2", "leftValue": "={{ JSON.parse($('Process Mining Agent').first().json.output).requires_jira_ticket === true }}", "rightValue": "true", "operator": { "type": "string", "operation": "equals", "name": "filter.operator.equals" } } ], "combinator": "and" }, "looseTypeValidation": true, "options": {} }, "type": "n8n-nodes-base.if", "typeVersion": 2.2, "position": [ 540, 0 ], "id": "ff8dd48b-d329-4e35-9580-30abb3a6b763", "name": "If" }, { "parameters": { "model": { "__rl": true, "value": "gpt-4o", "mode": "list", "cachedResultName": "gpt-4o" }, "options": {} }, "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi", "typeVersion": 1.2, "position": [ 740, 120 ], "id": "4bb6619c-3e3f-4ac6-bc58-47b91c6c635c", "name": "OpenAI Chat Model1", "credentials": { "openAiApi": { "id": "QZsZLrpuqJfzohud", "name": "OpenAi account" } } }, { "parameters": { "sessionIdType": "customKey", "sessionKey": "sample2" }, "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow", "typeVersion": 1.3, "position": [ 900, 120 ], "id": "1d3fc7a8-8b21-4470-bcdf-3591af65278d", "name": "Simple Memory1" }, { "parameters": { "promptType": "define", "text": "=You are a JIRA ticket creation system for process mining alerts.\n\nAVAILABLE TOOL:\n- create_ticket(title, description) - creates ticket with 2 fields\n\nTASK: Create JIRA ticket using data received from process mining analysis.\n\nALWAYS use create_ticket - do not respond with text!\n\nExample call:\ncreate_ticket(\"Alert Title\", \"Detailed description\")", "options": { "systemMessage": "Create JIRA ticket using this data:\n\nTitle: {{JSON.parse($('Process Mining Agent').first().json.output).ticket_details.title}}\nDescription: {{JSON.parse($('Process Mining Agent').first().json.output).reasoning}}\n\nUse function: create_ticket(\"{{JSON.parse($('Process Mining Agent').first().json.output).ticket_details.title}}\", \"{{JSON.parse($('Process Mining Agent').first().json.output).reasoning}}\")\n\nEXECUTE NOW!" } }, "type": "@n8n/n8n-nodes-langchain.agent", "typeVersion": 2, "position": [ 720, -160 ], "id": "07f35717-40e1-4f43-bbe7-f8ca489e50fe", "name": "JIRA Agent" }, { "parameters": { "promptType": "define", "text": "=Analyze the credit process using these exact tool calls:\n\n1. get_basic_stats()\n2. analyze_performance({\"bottleneck_threshold\": 1.5, \"percentage_of_cases\": 1.0})\n\nExecute both tools in sequence and provide comprehensive JSON analysis according to the format specified in the system message.", "options": { "systemMessage": "You are an expert in process mining and credit process business analysis.\n\nAVAILABLE MCP TOOLS:\n1. get_basic_stats() - basic process statistics (call without parameters)\n2. analyze_performance - performance analysis (call with specific parameters)\n\nCRITICAL TOOL USAGE:\n- get_basic_stats: call without any parameters\n- analyze_performance: call with {\"bottleneck_threshold\": 1.5, \"percentage_of_cases\": 1.0}\n\nEXAMPLES OF CORRECT CALLS:\n- get_basic_stats()\n- analyze_performance({\"bottleneck_threshold\": 1.5, \"percentage_of_cases\": 1.0})\n\nNEVER call functions with empty parameters {}!\n\nANALYSIS ALGORITHM:\n1. Call get_basic_stats() first to understand overall process state\n2. Call analyze_performance({\"bottleneck_threshold\": 1.5, \"percentage_of_cases\": 1.0}) to identify bottlenecks\n3. Combine results from both analyses into comprehensive assessment\n\nESCALATION CRITERIA:\nFrom get_basic_stats:\n- Average case duration > 72 hours\n- High time variance (std > 50% of mean)\n- Anomalies in case numbers\n\nFrom analyze_performance:\n- Bottlenecks in critical activities\n- Long waiting times\n- Activities exceeding threshold\n\nRESPONSE in JSON:\n{\n \"analysis_performed\": [\"get_basic_stats\", \"analyze_performance\"],\n \"basic_stats_results\": {\n \"avg_case_duration_hours\": number,\n \"total_cases\": number,\n \"process_health\": \"good|concerning|critical\"\n },\n \"performance_results\": {\n \"bottlenecks_found\": number,\n \"critical_activities\": [\"list of activities\"],\n \"max_activity_duration\": number\n },\n \"combined_assessment\": {\n \"overall_status\": \"healthy|at_risk|critical\",\n \"primary_concerns\": [\"list of main issues\"],\n \"impact_level\": \"low|medium|high|critical\"\n },\n \"requires_jira_ticket\": boolean,\n \"ticket_details\": {\n \"priority\": \"Medium|High|Critical\",\n \"title\": \"Process Performance Alert - [main issue]\",\n \"description\": \"Detailed description based on both analyses\",\n \"affected_metrics\": {\n \"avg_duration\": \"from basic_stats\",\n \"bottleneck_activities\": \"from performance\",\n \"cases_affected\": \"estimate\"\n },\n \"recommended_actions\": [\n \"specific actions based on identified problems\"\n ]\n },\n \"reasoning\": \"justification of decision based on results from both tools\"\n}\n\nREMEMBER: Use exact parameter format shown above!\n- get_basic_stats()\n- analyze_performance({\"bottleneck_threshold\": 1.5, \"percentage_of_cases\": 1.0})\n\nCRITICAL OUTPUT FORMAT:\n- Return ONLY valid JSON without any markdown formatting\n- NO ```json``` code blocks\n- NO backticks\n- NO additional text\n- Just pure JSON object starting with { and ending with }\n\nEXAMPLE CORRECT OUTPUT:\n{\"analysis_performed\": [\"get_basic_stats\"], \"requires_jira_ticket\": true, \"ticket_details\": {\"title\": \"Alert\"}}\n\nWRONG OUTPUT FORMATS (DO NOT USE):\n```json\n{\"analysis_performed\": [\"get_basic_stats\"]}" } }, "type": "@n8n/n8n-nodes-langchain.agent", "typeVersion": 2, "position": [ 240, 0 ], "id": "2b520e46-9a04-4987-98cc-6feaea5a9a8a", "name": "Process Mining Agent" }, { "parameters": { "sseEndpoint": "http://127.0.0.1:8000/sse ", "include": "selected", "includeTools": [ "analyze_performance", "get_basic_stats" ] }, "type": "@n8n/n8n-nodes-langchain.mcpClientTool", "typeVersion": 1, "position": [ 380, 200 ], "id": "230b79c6-0774-4148-932b-69ebf0f01793", "name": "MCP Client MCP4PM" }, { "parameters": { "sseEndpoint": "http://127.0.0.1:8001/sse ", "include": "selected" }, "type": "@n8n/n8n-nodes-langchain.mcpClientTool", "typeVersion": 1, "position": [ 1040, 120 ], "id": "665150e8-dff9-4f44-9f59-78de8243946b", "name": "MCP Client JIRA" } ], "pinData": {}, "connections": { "OpenAI Chat Model": { "ai_languageModel": [ [ { "node": "Process Mining Agent", "type": "ai_languageModel", "index": 0 } ] ] }, "Simple Memory": { "ai_memory": [ [ { "node": "Process Mining Agent", "type": "ai_memory", "index": 0 } ] ] }, "Schedule Trigger": { "main": [ [ { "node": "Process Mining Agent", "type": "main", "index": 0 } ] ] }, "If": { "main": [ [ { "node": "JIRA Agent", "type": "main", "index": 0 } ] ] }, "OpenAI Chat Model1": { "ai_languageModel": [ [ { "node": "JIRA Agent", "type": "ai_languageModel", "index": 0 } ] ] }, "Simple Memory1": { "ai_memory": [ [ { "node": "JIRA Agent", "type": "ai_memory", "index": 0 } ] ] }, "Process Mining Agent": { "main": [ [ { "node": "If", "type": "main", "index": 0 } ] ] }, "MCP Client MCP4PM": { "ai_tool": [ [ { "node": "Process Mining Agent", "type": "ai_tool", "index": 0 } ] ] }, "MCP Client JIRA": { "ai_tool": [ [ { "node": "JIRA Agent", "type": "ai_tool", "index": 0 } ] ] } }, "active": false, "settings": { "executionOrder": "v1" }, "versionId": "2151214d-8d02-4050-b421-28a00fd82b14", "meta": { "templateCredsSetupCompleted": true, "instanceId": "02437dbb075989ddac3de785d4b31427d831b9026118009e198b20783ea3ab94" }, "id": "V9SVmSfpohW7X1Bq", "tags": [] }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mostapow/mcp4pm'

If you have feedback or need assistance with the MCP directory API, please join our Discord server