# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Project Overview
Penpot MCP Server is a Python-based Model Context Protocol (MCP) server that bridges AI language models with Penpot, an open-source design platform. It enables programmatic interaction with design files through a well-structured API.
## Key Commands
### Development Setup
```bash
# Install dependencies (recommended)
uv sync --extra dev
# Run the MCP server
uv run penpot-mcp
# Run tests
uv run pytest
uv run pytest --cov=penpot_mcp tests/ # with coverage
# Lint and fix code
uv run python lint.py # check issues
uv run python lint.py --autofix # auto-fix issues
```
### Running the Server
```bash
# Default stdio mode (for Claude Desktop/Cursor)
make mcp-server
# SSE mode (for debugging with inspector)
make mcp-server-sse
# Launch MCP inspector (requires SSE mode)
make mcp-inspector
```
### CLI Tools
```bash
# Generate tree visualization
penpot-tree path/to/penpot_file.json
# Validate Penpot file
penpot-validate path/to/penpot_file.json
```
## Architecture Overview
### Core Components
1. **MCP Server** (`penpot_mcp/server/mcp_server.py`)
- Built on FastMCP framework
- Implements resources and tools for Penpot interaction
- Memory cache with 10-minute TTL
- Supports stdio (default) and SSE modes
2. **API Client** (`penpot_mcp/api/penpot_api.py`)
- REST client for Penpot platform
- Transit+JSON format handling
- Cookie-based authentication with auto-refresh
- Lazy authentication pattern
3. **Key Design Patterns**
- **Authentication**: Cookie-based with automatic re-authentication on 401/403
- **Caching**: In-memory file cache to reduce API calls
- **Resource/Tool Duality**: Resources can be exposed as tools via RESOURCES_AS_TOOLS config
- **Transit Format**: Special handling for UUIDs (`~u` prefix) and keywords (`~:` prefix)
### Available Tools/Functions
- `list_projects`: Get all Penpot projects
- `get_project_files`: List files in a project
- `get_file`: Retrieve and cache file data
- `search_object`: Search design objects by name (regex)
- `get_object_tree`: Get filtered object tree with screenshot
- `export_object`: Export design objects as images
- `penpot_tree_schema`: Get schema for object tree fields
### Environment Configuration
Create a `.env` file with:
```env
PENPOT_API_URL=https://design.penpot.app/api
PENPOT_USERNAME=your_username
PENPOT_PASSWORD=your_password
ENABLE_HTTP_SERVER=true # for image serving
RESOURCES_AS_TOOLS=false # MCP resource mode
DEBUG=true # debug logging
```
### Working with the Codebase
1. **Adding New Tools**: Decorate functions with `@self.mcp.tool()` in mcp_server.py
2. **API Extensions**: Add methods to PenpotAPI class following existing patterns
3. **Error Handling**: Always check for `"error"` keys in API responses
4. **Testing**: Use `test_mode=True` when creating server instances in tests
5. **Transit Format**: Remember to handle Transit+JSON when working with raw API
### Common Workflow for Code Generation
1. List projects → Find target project
2. Get project files → Locate design file
3. Search for component → Find specific element
4. Get tree schema → Understand available fields
5. Get object tree → Retrieve structure with screenshot
6. Export if needed → Get rendered component image
### Testing Patterns
- Mock fixtures in `tests/conftest.py`
- Test both stdio and SSE modes
- Verify Transit format conversions
- Check cache behavior and expiration
## Memories
- Keep the current transport format for the current API requests
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/montevive/penpot-mcp'
If you have feedback or need assistance with the MCP directory API, please join our Discord server