Skip to main content
Glama

MongoDB MCP Server

Official
by mongodb-js
mongodbSchemas.ts3.8 kB
import z from "zod"; import { zEJSON } from "../args.js"; export const zVoyageModels = z .enum(["voyage-3-large", "voyage-3.5", "voyage-3.5-lite", "voyage-code-3"]) .default("voyage-3-large"); // Zod does not undestand JS boxed numbers (like Int32) as integer literals, // so we preprocess them to unwrap them so Zod understands them. function unboxNumber(v: unknown): number { if (v && typeof v === "object" && typeof v.valueOf === "function") { const n = Number(v.valueOf()); if (!Number.isNaN(n)) return n; } return v as number; } export const zVoyageEmbeddingParameters = z.object({ outputDimension: z .preprocess( unboxNumber, z.union([z.literal(256), z.literal(512), z.literal(1024), z.literal(2048), z.literal(4096)]) ) .optional() .default(1024), outputDtype: z.enum(["float", "int8", "uint8", "binary", "ubinary"]).optional().default("float"), }); export const zVoyageAPIParameters = zVoyageEmbeddingParameters .extend({ inputType: z.enum(["query", "document"]), }) .strip(); export type VoyageModels = z.infer<typeof zVoyageModels>; export type VoyageEmbeddingParameters = z.infer<typeof zVoyageEmbeddingParameters> & EmbeddingParameters; export type EmbeddingParameters = { inputType: "query" | "document"; }; export const zSupportedEmbeddingParameters = zVoyageEmbeddingParameters.extend({ model: zVoyageModels }); export type SupportedEmbeddingParameters = z.infer<typeof zSupportedEmbeddingParameters>; export const AnyAggregateStage = zEJSON(); export const VectorSearchStage = z.object({ $vectorSearch: z .object({ exact: z .boolean() .optional() .default(false) .describe( "When true, uses an ENN algorithm, otherwise uses ANN. Using ENN is not compatible with numCandidates, in that case, numCandidates must be left empty." ), index: z.string().describe("Name of the index, as retrieved from the `collection-indexes` tool."), path: z .string() .describe( "Field, in dot notation, where to search. There must be a vector search index for that field. Note to LLM: When unsure, use the 'collection-indexes' tool to validate that the field is indexed with a vector search index." ), queryVector: z .union([z.string(), z.array(z.number())]) .describe( "The content to search for. The embeddingParameters field is mandatory if the queryVector is a string, in that case, the tool generates the embedding automatically using the provided configuration." ), numCandidates: z .number() .int() .positive() .optional() .describe("Number of candidates for the ANN algorithm. Mandatory when exact is false."), limit: z.number().int().positive().optional().default(10), filter: zEJSON() .optional() .describe( "MQL filter that can only use filter fields from the index definition. Note to LLM: If unsure, use the `collection-indexes` tool to learn which fields can be used for filtering." ), embeddingParameters: zSupportedEmbeddingParameters .optional() .describe( "The embedding model and its parameters to use to generate embeddings before searching. It is mandatory if queryVector is a string value. Note to LLM: If unsure, ask the user before providing one." ), }) .passthrough(), });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mongodb-js/mongodb-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server