import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import {
CallToolResult,
CreateMessageRequest,
CreateMessageResultSchema,
} from "@modelcontextprotocol/sdk/types.js";
import { z } from "zod";
// Tool input schema
const TriggerSamplingRequestSchema = z.object({
prompt: z.string().describe("The prompt to send to the LLM"),
maxTokens: z
.number()
.default(100)
.describe("Maximum number of tokens to generate"),
});
// Tool configuration
const name = "trigger-sampling-request";
const config = {
title: "Trigger Sampling Request Tool",
description: "Trigger a Request from the Server for LLM Sampling",
inputSchema: TriggerSamplingRequestSchema,
};
/**
* Registers the 'trigger-sampling-request' tool.
*
* If the client does not support the sampling capability, the tool is not registered.
*
* The registered tool performs the following operations:
* - Validates incoming arguments using `TriggerSamplingRequestSchema`.
* - Constructs a `sampling/createMessage` request object using provided prompt and maximum tokens.
* - Sends the request to the server for sampling.
* - Formats and returns the sampling result content to the client.
*
* @param {McpServer} server - The McpServer instance where the tool will be registered.
*/
export const registerTriggerSamplingRequestTool = (server: McpServer) => {
// Does the client support sampling?
const clientCapabilities = server.server.getClientCapabilities() || {};
const clientSupportsSampling: boolean =
clientCapabilities.sampling !== undefined;
// If so, register tool
if (clientSupportsSampling) {
server.registerTool(
name,
config,
async (args, extra): Promise<CallToolResult> => {
const validatedArgs = TriggerSamplingRequestSchema.parse(args);
const { prompt, maxTokens } = validatedArgs;
// Create the sampling request
const request: CreateMessageRequest = {
method: "sampling/createMessage",
params: {
messages: [
{
role: "user",
content: {
type: "text",
text: `Resource ${name} context: ${prompt}`,
},
},
],
systemPrompt: "You are a helpful test server.",
maxTokens,
temperature: 0.7,
},
};
// Send the sampling request to the client
const result = await extra.sendRequest(
request,
CreateMessageResultSchema
);
// Return the result to the client
return {
content: [
{
type: "text",
text: `LLM sampling result: \n${JSON.stringify(result, null, 2)}`,
},
],
};
}
);
}
};