Skip to main content
Glama
Client.kt4 kB
package maestro.ai.openai import io.ktor.client.HttpClient import io.ktor.client.request.post import io.ktor.client.request.setBody import io.ktor.client.statement.bodyAsText import io.ktor.http.ContentType import io.ktor.http.contentType import io.ktor.http.isSuccess import io.ktor.util.encodeBase64 import kotlinx.serialization.SerializationException import kotlinx.serialization.encodeToString import kotlinx.serialization.json.Json import kotlinx.serialization.json.JsonObject import maestro.ai.AI import maestro.ai.CompletionData import maestro.ai.common.Base64Image import org.slf4j.LoggerFactory private const val API_URL = "https://api.openai.com/v1/chat/completions" private val logger = LoggerFactory.getLogger(OpenAI::class.java) class OpenAI( defaultModel: String = "gpt-4o", httpClient: HttpClient = defaultHttpClient, private val apiKey: String, private val defaultTemperature: Float = 0.2f, private val defaultMaxTokens: Int = 1024, private val defaultImageDetail: String = "high", ) : AI(defaultModel = defaultModel, httpClient = httpClient) { private val json = Json { ignoreUnknownKeys = true } override suspend fun chatCompletion( prompt: String, images: List<ByteArray>, temperature: Float?, model: String?, maxTokens: Int?, imageDetail: String?, identifier: String?, jsonSchema: JsonObject?, ): CompletionData { val imagesBase64 = images.map { it.encodeBase64() } // Fallback to OpenAI defaults val actualTemperature = temperature ?: defaultTemperature val actualModel = model ?: defaultModel val actualMaxTokens = maxTokens ?: defaultMaxTokens val actualImageDetail = imageDetail ?: defaultImageDetail val imagesContent = imagesBase64.map { image -> ContentDetail( type = "image_url", imageUrl = Base64Image(url = "data:image/png;base64,$image", detail = actualImageDetail), ) } val textContent = ContentDetail(type = "text", text = prompt) val messages = listOf( MessageContent( role = "user", content = imagesContent + textContent, ) ) val chatCompletionRequest = ChatCompletionRequest( model = actualModel, temperature = actualTemperature, messages = messages, maxTokens = actualMaxTokens, seed = 1566, responseFormat = if (jsonSchema == null) null else ResponseFormat( type = "json_schema", jsonSchema = jsonSchema, ), ) val chatCompletionResponse = try { val httpResponse = httpClient.post(API_URL) { contentType(ContentType.Application.Json) headers["Authorization"] = "Bearer $apiKey" setBody(json.encodeToString(chatCompletionRequest)) } val body = httpResponse.bodyAsText() if (!httpResponse.status.isSuccess()) { logger.error("Failed to complete request to OpenAI: ${httpResponse.status}, $body") throw Exception("Failed to complete request to OpenAI: ${httpResponse.status}, $body") } json.decodeFromString<ChatCompletionResponse>(body) } catch (e: SerializationException) { logger.error("Failed to parse response from OpenAI", e) throw e } catch (e: Exception) { logger.error("Failed to complete request to OpenAI", e) throw e } return CompletionData( prompt = prompt, temperature = actualTemperature, maxTokens = actualMaxTokens, images = imagesBase64, model = actualModel, response = chatCompletionResponse.choices.first().message.content, ) } override fun close() = httpClient.close() }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mobile-dev-inc/Maestro'

If you have feedback or need assistance with the MCP directory API, please join our Discord server