Skip to main content
Glama

Educational Tutor

An experimental system that transforms documentation repositories into interactive educational content using AI and the Model Context Protocol (MCP).

🌟 Overview

This project consists of two main components:

  1. šŸ“š Course Content Agent - Generates structured learning courses from documentation repositories

  2. šŸ”§ MCP Educational Server - Provides standardized access to course content via MCP protocol

šŸ—ļø Architecture

Documentation Repository → Course Content Agent → Structured Courses → MCP Server → AI Tutors

The system processes documentation, creates educational content, and exposes it through standardized tools for AI tutoring applications.

šŸ“‚ Project Structure

tutor/ ā”œā”€ā”€ course_content_agent/ # AI-powered course generation from docs │ ā”œā”€ā”€ main.py # CourseBuilder orchestration │ ā”œā”€ā”€ modules.py # Core processing logic │ ā”œā”€ā”€ models.py # Pydantic data models │ ā”œā”€ā”€ signatures.py # DSPy LLM signatures │ └── about.md # šŸ“– Detailed documentation ā”œā”€ā”€ mcp_server/ # MCP protocol server for course access │ ā”œā”€ā”€ main.py # MCP server startup │ ā”œā”€ā”€ tools.py # Course interaction tools │ ā”œā”€ā”€ course_management.py # Content processing │ └── about.md # šŸ“– Detailed documentation ā”œā”€ā”€ course_output/ # Generated course content ā”œā”€ā”€ nbs/ # Jupyter notebooks for development └── pyproject.toml # Project configuration

šŸš€ Quick Start

1. Install Dependencies and Create Virtual Environment

This project uses uv for fast Python package management.

# Create a virtual environment python -m uv venv # Install dependencies in editable mode .venv/bin/uv pip install -e .

2. Generate Courses from Documentation

# Generate courses from a repository .venv/bin/uv run python course_content_agent/test.py

Customize for Your Repository: Edit course_content_agent/test.py to change:

  • Repository URL (currently uses MCP docs)

  • Include/exclude specific folders

  • Output directory and caching settings

3. Start MCP Server

# Serve generated courses via MCP protocol .venv/bin/uv run python -m mcp_server.main # Or customize course directory COURSE_DIR=your_course_output .venv/bin/uv run python -m mcp_server.main

4. Test MCP Integration

# Test server capabilities .venv/bin/uv run python mcp_server/stdio_client.py

šŸ“– Detailed Documentation

For comprehensive information about each component:

  • Course Content Agent: See course_content_agent/about.md

    • AI-powered course generation

    • DSPy signatures and multiprocessing

    • Document analysis and learning path creation

  • MCP Educational Server: See mcp_server/about.md

    • MCP protocol implementation

    • Course interaction tools

    • Integration with AI assistants

šŸ”Œ MCP Integration with Cursor

To use the educational tutor MCP server with Cursor, create a .cursor/mcp.json file in your project root:

{ "mcpServers": { "educational-tutor": { "command": "/path/to/tutor/project/.venv/bin/uv", "args": [ "--directory", "/path/to/tutor/project", "run", "mcp_server/main.py" ], "env": { "COURSE_DIR": "/path/to/tutor/project/course_output" } } } }

Setup Steps:

  1. Create a virtual environment: python -m uv venv

  2. Install dependencies: .venv/bin/uv pip install -e .

  3. Update the command path and the path in args to your project directory.

  4. Restart Cursor or reload the window.

  5. Use @educational-tutor in Cursor chat to access course tools.

šŸ”§ Development Status

Current Status: āœ… Functional MVP

  • Course generation from documentation repositories

  • MCP server for standardized content access

  • Multi-complexity course creation (beginner/intermediate/advanced)

Future Enhancements:

  • Support for diverse content sources (websites, videos)

  • Advanced search and recommendation systems

  • Integration with popular AI platforms

šŸ› ļø Technology Stack

  • AI Framework: DSPy for LLM orchestration

  • Content Processing: Multiprocessing for performance

  • Protocol: Model Context Protocol (MCP) for standardization

  • Models: Gemini 2.5 Flash for content generation

  • Data: Pydantic models for type safety

šŸ“„ License

This project is experimental and intended for educational and research purposes.

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/moarshy/mcp-tutor'

If you have feedback or need assistance with the MCP directory API, please join our Discord server