Skip to main content
Glama
quickstart.md5.3 kB
# Quick Start Get up and running with Mnemex in 5 minutes. ## Prerequisites - ✅ Mnemex installed ([Installation Guide](installation.md)) - ✅ Configuration file created ([Configuration Guide](configuration.md)) - ✅ Claude Desktop configured with MCP server ## Step 1: Verify Installation Check that Mnemex is ready: ```bash # Check MCP server mnemex --version # Check CLI tools mnemex-search --help mnemex-maintenance --help ``` ## Step 2: Start Claude Desktop Restart Claude Desktop to load the Mnemex MCP server. Verify Mnemex is available: 1. Start a new conversation 2. Look for the 🔌 icon (MCP tools available) 3. Mnemex should appear in the available servers ## Step 3: Save Your First Memory In Claude, try: > "I prefer TypeScript over JavaScript for new projects. Remember this preference." Claude will automatically use `save_memory` to store this information. ## Step 4: Recall a Memory Later, ask: > "What are my language preferences?" Claude will use `search_memory` to find and recall your preference. ## Step 5: View Your Memories Check what's stored: ```bash # Search all memories mnemex-search "TypeScript" # View storage statistics mnemex-maintenance stats # See raw JSONL storage cat ~/.config/mnemex/jsonl/memories.jsonl ``` ## Common Patterns ### Auto-Save Important Information Claude automatically saves when you share: - Personal preferences - Project decisions - Important facts - Context about your work ### Auto-Recall Context Claude automatically searches memory when you: - Reference past topics - Ask about previous decisions - Continue earlier conversations ### Reinforce Memories When you revisit information, Claude uses `touch_memory` to strengthen it, preventing decay. ### Consolidate Similar Memories When similar memories accumulate: ```bash # Find clusters mnemex-consolidate --preview # Apply consolidation mnemex-consolidate --apply ``` Or let Claude do it automatically when detecting related memories. ## Example Workflow ### 1. Project Setup > "I'm starting a new project called 'task-tracker'. It's a Python web app using FastAPI and PostgreSQL." Claude saves this as a memory with entities: `task-tracker`, `FastAPI`, `PostgreSQL` ### 2. Make Decisions > "For task-tracker, I've decided to use SQLAlchemy for the ORM and Alembic for migrations." Claude saves this decision and links it to the project entity. ### 3. Days Later... > "What decisions did I make for task-tracker?" Claude searches memories for `task-tracker` entity and recalls all related decisions. ### 4. Review Memory Status ```bash # See all memories related to project mnemex-search "task-tracker" # Check decay scores mnemex-maintenance stats ``` ### 5. Promote to Long-Term Important memories automatically promote to LTM when: - Score >= 0.65 (high value) - Used 5+ times in 14 days Or manually promote: ```bash # Find high-value memories mnemex-promote --dry-run # Promote to Obsidian vault mnemex-promote ``` ## CLI Tools ### Search Across STM + LTM ```bash # Basic search mnemex-search "Python" # Filter by tags mnemex-search "Python" --tags coding,projects # Limit results mnemex-search "Python" --limit 10 ``` ### Maintenance ```bash # View statistics mnemex-maintenance stats # Compact storage (remove deleted entries) mnemex-maintenance compact # Full report mnemex-maintenance report ``` ### Garbage Collection ```bash # Preview what will be deleted mnemex-gc --dry-run # Delete low-scoring memories mnemex-gc ``` ### Memory Consolidation ```bash # Find similar memory clusters mnemex-consolidate --preview --cohesion-threshold 0.75 # Apply consolidation mnemex-consolidate --apply --cohesion-threshold 0.80 ``` ## Advanced Usage ### Custom Decay Parameters Edit `~/.config/mnemex/.env`: ```bash # Slower decay (memories last longer) MNEMEX_PL_HALFLIFE_DAYS=7.0 # Faster decay (more aggressive forgetting) MNEMEX_PL_HALFLIFE_DAYS=1.0 ``` Restart Claude Desktop to apply changes. ### Knowledge Graph Build a graph of connected concepts: ```python # Create explicit relations create_relation( from_id="mem_project_xyz", to_id="mem_decision_sqlalchemy", relation_type="has_decision" ) # Query the graph read_graph() # Get entire graph open_memories(["mem_project_xyz"]) # Get memory with relations ``` ### Embeddings for Semantic Search Enable in `.env`: ```bash MNEMEX_ENABLE_EMBEDDINGS=true MNEMEX_EMBED_MODEL=all-MiniLM-L6-v2 ``` Install dependencies: ```bash uv pip install sentence-transformers ``` ## Troubleshooting ### No Memories Being Saved 1. Check Claude Desktop logs for MCP errors 2. Verify `.env` file exists: `cat ~/.config/mnemex/.env` 3. Check storage directory: `ls ~/.config/mnemex/jsonl/` ### Can't Find Memories 1. Check search: `mnemex-search "keyword"` 2. View all: `cat ~/.config/mnemex/jsonl/memories.jsonl` 3. Check decay scores: `mnemex-maintenance stats` ### Memory Decay Too Fast Increase half-life in `.env`: ```bash MNEMEX_PL_HALFLIFE_DAYS=7.0 # Increase from 3.0 ``` ## Next Steps - [API Reference](api.md) - Learn all 11 MCP tools - [Architecture](architecture.md) - Understand how Mnemex works - [Knowledge Graph](graph_features.md) - Build connected concepts - [Scoring Algorithm](scoring_algorithm.md) - Deep dive into decay

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mnemexai/mnemex'

If you have feedback or need assistance with the MCP directory API, please join our Discord server