Skip to main content
Glama
README.mdβ€’23.7 kB
# Mnemex: Temporal Memory for AI <!-- mcp-name: io.github.simplemindedbot/mnemex --> A Model Context Protocol (MCP) server providing **human-like memory dynamics** for AI assistants. Memories naturally fade over time unless reinforced through use, mimicking the [Ebbinghaus forgetting curve](https://en.wikipedia.org/wiki/Forgetting_curve). [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Python 3.10+](https://img.shields.io/badge/python-3.10+-blue.svg)](https://www.python.org/downloads/) [![Tests](https://github.com/simplemindedbot/mnemex/actions/workflows/tests.yml/badge.svg)](https://github.com/simplemindedbot/mnemex/actions/workflows/tests.yml) [![Security Scanning](https://github.com/simplemindedbot/mnemex/actions/workflows/security.yml/badge.svg)](https://github.com/simplemindedbot/mnemex/actions/workflows/security.yml) [![codecov](https://codecov.io/gh/simplemindedbot/mnemex/branch/main/graph/badge.svg)](https://codecov.io/gh/simplemindedbot/mnemex) [![SBOM: CycloneDX](https://img.shields.io/badge/SBOM-CycloneDX-blue)](https://github.com/simplemindedbot/mnemex/actions/workflows/security.yml) > [!WARNING] > **🚧 ACTIVE DEVELOPMENT - EXPECT BUGS 🚧** > > This project is under active development and should be considered **experimental**. You will likely encounter bugs, breaking changes, and incomplete features. Use at your own risk. Please report issues on GitHub, but understand that this is research code, not production-ready software. > > **Known issues:** > > - API may change without notice between versions > - Test coverage is incomplete > **πŸ“– New to this project?** Start with the [ELI5 Guide](ELI5.md) for a simple explanation of what this does and how to use it. ## What is Mnemex? **Mnemex gives AI assistants like Claude a human-like memory system.** ### The Problem When you chat with Claude, it forgets everything between conversations. You tell it "I prefer TypeScript" or "I'm allergic to peanuts," and three days later, you have to repeat yourself. This is frustrating and wastes time. ### What Mnemex Does Mnemex makes AI assistants **remember things naturally**, just like human memory: - 🧠 **Remembers what matters** - Your preferences, decisions, and important facts - ⏰ **Forgets naturally** - Old, unused information fades away over time (like the [Ebbinghaus forgetting curve](https://en.wikipedia.org/wiki/Forgetting_curve)) - πŸ’ͺ **Gets stronger with use** - The more you reference something, the longer it's remembered - πŸ“¦ **Saves important things permanently** - Frequently used memories get promoted to long-term storage ### How It Works (Simple Version) 1. **You talk naturally** - "I prefer dark mode in all my apps" 2. **Memory is saved automatically** - No special commands needed 3. **Time passes** - Memory gradually fades if not used 4. **You reference it again** - "Make this app dark mode" 5. **Memory gets stronger** - Now it lasts even longer 6. **Important memories promoted** - Used 5+ times? Saved permanently to your Obsidian vault **No flashcards. No explicit review. Just natural conversation.** ### Why It's Different Most memory systems are dumb: - ❌ "Delete after 7 days" (doesn't care if you used it 100 times) - ❌ "Keep last 100 items" (throws away important stuff just because it's old) Mnemex is smart: - βœ… Combines **recency** (when?), **frequency** (how often?), and **importance** (how critical?) - βœ… Memories fade naturally like human memory - βœ… Frequently used memories stick around longer - βœ… You can mark critical things to "never forget" ## Technical Overview This repository contains research, design, and a complete implementation of a short-term memory system that combines: - **Novel temporal decay algorithm** based on cognitive science - **Reinforcement learning** through usage patterns - **Two-layer architecture** (STM + LTM) for working and permanent memory - **Smart prompting patterns** for natural LLM integration - **Git-friendly storage** with human-readable JSONL - **Knowledge graph** with entities and relations ## Why Mnemex? ### πŸ”’ Privacy & Transparency **All data stored locally on your machine** - no cloud services, no tracking, no data sharing. - **Short-term memory**: Human-readable JSONL files (`~/.config/mnemex/jsonl/`) - One JSON object per line - Easy to inspect, version control, and backup - Git-friendly format for tracking changes - **Long-term memory**: Markdown files optimized for Obsidian - YAML frontmatter with metadata - Wikilinks for connections - Permanent storage you control You own your data. You can read it, edit it, delete it, or version control it - all without any special tools. ## Core Algorithm The temporal decay scoring function: $$ \Large \text{score}(t) = (n_{\text{use}})^\beta \cdot e^{-\lambda \cdot \Delta t} \cdot s $$ Where: - $\large n_{\text{use}}$ - Use count (number of accesses) - $\large \beta$ (beta) - Sub-linear use count weighting (default: 0.6) - $\large \lambda = \frac{\ln(2)}{t_{1/2}}$ (lambda) - Decay constant; set via half-life (default: 3-day) - $\large \Delta t$ - Time since last access (seconds) - $\large s$ - Strength parameter $\in [0, 2]$ (importance multiplier) Thresholds: - $\large \tau_{\text{forget}}$ (default 0.05) β€” if score < this, forget - $\large \tau_{\text{promote}}$ (default 0.65) β€” if score β‰₯ this, promote (or if $\large n_{\text{use}}\ge5$ in 14 days) Decay Models: - Power‑Law (default): heavier tail; most human‑like retention - Exponential: lighter tail; forgets sooner - Two‑Component: fast early forgetting + heavier tail See detailed parameter reference, model selection, and worked examples in docs/scoring_algorithm.md. ## Tuning Cheat Sheet - Balanced (default) - Half-life: 3 days (Ξ» β‰ˆ 2.67e-6) - Ξ² = 0.6, Ο„_forget = 0.05, Ο„_promote = 0.65, use_countβ‰₯5 in 14d - Strength: 1.0 (bump to 1.3–2.0 for critical) - High‑velocity context (ephemeral notes, rapid switching) - Half-life: 12–24 hours (Ξ» β‰ˆ 1.60e-5 to 8.02e-6) - Ξ² = 0.8–0.9, Ο„_forget = 0.10–0.15, Ο„_promote = 0.70–0.75 - Long retention (research/archival) - Half-life: 7–14 days (Ξ» β‰ˆ 1.15e-6 to 5.73e-7) - Ξ² = 0.3–0.5, Ο„_forget = 0.02–0.05, Ο„_promote = 0.50–0.60 - Preference/decision heavy assistants - Half-life: 3–7 days; Ξ² = 0.6–0.8 - Strength defaults: 1.3–1.5 for preferences; 1.8–2.0 for decisions - Aggressive space control - Raise Ο„_forget to 0.08–0.12 and/or shorten half-life; schedule weekly GC - Environment template - MNEMEX_DECAY_LAMBDA=2.673e-6, MNEMEX_DECAY_BETA=0.6 - MNEMEX_FORGET_THRESHOLD=0.05, MNEMEX_PROMOTE_THRESHOLD=0.65 - MNEMEX_PROMOTE_USE_COUNT=5, MNEMEX_PROMOTE_TIME_WINDOW=14 **Decision thresholds:** - Forget: $\text{score} < 0.05$ β†’ delete memory - Promote: $\text{score} \geq 0.65$ OR $n_{\text{use}} \geq 5$ within 14 days β†’ move to LTM ## Key Innovations ### 1. Temporal Decay with Reinforcement Unlike traditional caching (TTL, LRU), memories are scored continuously based on: - **Recency** - Exponential decay over time - **Frequency** - Use count with sub-linear weighting - **Importance** - Adjustable strength parameter This creates memory dynamics that closely mimic human cognition. ### 2. Smart Prompting System Patterns for making AI assistants use memory naturally: **Auto-Save** ``` User: "I prefer TypeScript over JavaScript" β†’ Automatically saved with tags: [preferences, typescript, programming] ``` **Auto-Recall** ``` User: "Can you help with another TypeScript project?" β†’ Automatically retrieves preferences and conventions ``` **Auto-Reinforce** ``` User: "Yes, still using TypeScript" β†’ Memory strength increased, decay slowed ``` No explicit memory commands needed - just natural conversation. ### 3. Natural Spaced Repetition Inspired by how concepts naturally reinforce across different contexts (the "Maslow effect" - remembering Maslow's hierarchy better when it appears in history, economics, and sociology classes). **No flashcards. No explicit review sessions. Just natural conversation.** **How it works:** 1. **Review Priority Calculation** - Memories in the "danger zone" (0.15-0.35 decay score) get highest priority 2. **Cross-Domain Detection** - Detects when memories are used in different contexts (tag Jaccard similarity <30%) 3. **Automatic Reinforcement** - Memories strengthen naturally when used, especially across domains 4. **Blended Search** - Review candidates appear in 30% of search results (configurable) **Usage pattern:** ``` User: "Can you help with authentication in my API?" β†’ System searches, retrieves JWT preference memory β†’ System uses memory to answer question β†’ System calls observe_memory_usage with context tags [api, auth, backend] β†’ Cross-domain usage detected (original tags: [security, jwt, preferences]) β†’ Memory automatically reinforced, strength boosted β†’ Next search naturally surfaces memories needing review ``` **Configuration:** ```bash MNEMEX_REVIEW_BLEND_RATIO=0.3 # 30% review candidates in search MNEMEX_REVIEW_DANGER_ZONE_MIN=0.15 # Lower bound of danger zone MNEMEX_REVIEW_DANGER_ZONE_MAX=0.35 # Upper bound of danger zone MNEMEX_AUTO_REINFORCE=true # Auto-reinforce on observe ``` See `docs/prompts/` for LLM system prompt templates that enable natural memory usage. ### 4. Two-Layer Architecture ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Short-term memory β”‚ β”‚ - JSONL storage β”‚ β”‚ - Temporal decay β”‚ β”‚ - Hours to weeks retention β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ Automatic promotion ↓ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ LTM (Long-Term Memory) β”‚ β”‚ - Markdown files (Obsidian) β”‚ β”‚ - Permanent storage β”‚ β”‚ - Git version control β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` ## Project Structure ``` mnemex/ β”œβ”€β”€ README.md # This file β”œβ”€β”€ CLAUDE.md # Guide for AI assistants β”œβ”€β”€ src/mnemex/ β”‚ β”œβ”€β”€ core/ # Decay, scoring, clustering β”‚ β”œβ”€β”€ storage/ # JSONL and LTM index β”‚ β”œβ”€β”€ tools/ # 11 MCP tools β”‚ β”œβ”€β”€ backup/ # Git integration β”‚ └── vault/ # Obsidian integration β”œβ”€β”€ docs/ β”‚ β”œβ”€β”€ scoring_algorithm.md # Mathematical details β”‚ β”œβ”€β”€ prompts/ # Smart prompting patterns β”‚ β”œβ”€β”€ architecture.md # System design β”‚ └── api.md # Tool reference β”œβ”€β”€ tests/ # Test suite β”œβ”€β”€ examples/ # Usage examples └── pyproject.toml # Project configuration ``` ## Quick Start ### Installation **Recommended: UV Tool Install (from PyPI)** ```bash # Install from PyPI (recommended - fast, isolated, includes all 7 CLI commands) uv tool install mnemex ``` This installs `mnemex` and all 7 CLI commands in an isolated environment. **Alternative Installation Methods** ```bash # Using pipx (similar isolation to uv) pipx install mnemex # Using pip (traditional, installs in current environment) pip install mnemex # From GitHub (latest development version) uv tool install git+https://github.com/simplemindedbot/mnemex.git ``` **For Development (Editable Install)** ```bash # Clone and install in editable mode git clone https://github.com/simplemindedbot/mnemex.git cd mnemex uv pip install -e ".[dev]" ``` ### Configuration Copy `.env.example` to `.env` and configure: ```bash # Storage MNEMEX_STORAGE_PATH=~/.config/mnemex/jsonl # Decay model (power_law | exponential | two_component) MNEMEX_DECAY_MODEL=power_law # Power-law parameters (default model) MNEMEX_PL_ALPHA=1.1 MNEMEX_PL_HALFLIFE_DAYS=3.0 # Exponential (if selected) # MNEMEX_DECAY_LAMBDA=2.673e-6 # 3-day half-life # Two-component (if selected) # MNEMEX_TC_LAMBDA_FAST=1.603e-5 # ~12h # MNEMEX_TC_LAMBDA_SLOW=1.147e-6 # ~7d # MNEMEX_TC_WEIGHT_FAST=0.7 # Common parameters MNEMEX_DECAY_LAMBDA=2.673e-6 MNEMEX_DECAY_BETA=0.6 # Thresholds MNEMEX_FORGET_THRESHOLD=0.05 MNEMEX_PROMOTE_THRESHOLD=0.65 # Long-term memory (optional) LTM_VAULT_PATH=~/Documents/Obsidian/Vault ``` ### MCP Configuration Add to your Claude Desktop config (`~/Library/Application Support/Claude/claude_desktop_config.json`): ```json { "mcpServers": { "mnemex": { "command": "mnemex" } } } ``` That's it! No paths, no environment variables needed. **For development (editable install):** ```json { "mcpServers": { "mnemex": { "command": "uv", "args": ["--directory", "/path/to/mnemex", "run", "mnemex"], "env": {"PYTHONPATH": "/path/to/mnemex/src"} } } } ``` **Configuration:** - Storage paths are configured in `~/.config/mnemex/.env` or project `.env` - See `.env.example` for all available settings #### Troubleshooting: Command Not Found If Claude Desktop shows `spawn mnemex ENOENT` errors, the `mnemex` command isn't in Claude Desktop's PATH. **macOS/Linux: GUI apps don't inherit shell PATH** GUI applications on macOS and Linux don't see your shell's PATH configuration (`.zshrc`, `.bashrc`, etc.). Claude Desktop only searches: - `/usr/local/bin` - `/opt/homebrew/bin` (macOS) - `/usr/bin` - `/bin` - `/usr/sbin` - `/sbin` If `uv tool install` placed `mnemex` in `~/.local/bin/` or another custom location, Claude Desktop can't find it. **Solution: Use absolute path** ```bash # Find where mnemex is installed which mnemex # Example output: /Users/username/.local/bin/mnemex ``` Update your Claude config with the absolute path: ```json { "mcpServers": { "mnemex": { "command": "/Users/username/.local/bin/mnemex" } } } ``` Replace `/Users/username/.local/bin/mnemex` with your actual path from `which mnemex`. **Alternative: System-wide install** You can also install to a system location that Claude Desktop searches: ```bash # Option 1: Link to /usr/local/bin sudo ln -s ~/.local/bin/mnemex /usr/local/bin/mnemex # Option 2: Install with pipx/uv to system location (requires admin) sudo uv tool install git+https://github.com/simplemindedbot/mnemex.git ``` ### Maintenance Use the maintenance CLI to inspect and compact JSONL storage: ```bash # Show storage stats (active counts, file sizes, compaction hints) mnemex-maintenance stats # Compact JSONL (rewrite without tombstones/duplicates) mnemex-maintenance compact ``` ### Migrating to UV Tool Install If you're currently using an editable install (`uv pip install -e .`), you can switch to the simpler UV tool install: ```bash # 1. Uninstall editable version uv pip uninstall mnemex # 2. Install as UV tool uv tool install git+https://github.com/simplemindedbot/mnemex.git # 3. Update Claude Desktop config to just: # {"command": "mnemex"} # Remove the --directory, run, and PYTHONPATH settings ``` **Your data is safe!** This only changes how the command is installed. Your memories in `~/.config/mnemex/` are untouched. ### Migrating from STM Server If you previously used this project as "STM Server", use the migration tool: ```bash # Preview what will be migrated mnemex-migrate --dry-run # Migrate data files from ~/.stm/ to ~/.config/mnemex/ mnemex-migrate --data-only # Also migrate .env file (rename STM_* variables to MNEMEX_*) mnemex-migrate --migrate-env --env-path ./.env ``` The migration tool will: - Copy JSONL files from `~/.stm/jsonl/` to `~/.config/mnemex/jsonl/` - Optionally rename environment variables (STM_* β†’ MNEMEX_*) - Create backups before making changes - Provide clear next-step instructions After migration, update your Claude Desktop config to use `mnemex` instead of `stm`. ## CLI Commands The server includes 7 command-line tools: ```bash mnemex # Run MCP server mnemex-migrate # Migrate from old STM setup mnemex-index-ltm # Index Obsidian vault mnemex-backup # Git backup operations mnemex-vault # Vault markdown operations mnemex-search # Unified STM+LTM search mnemex-maintenance # JSONL storage stats and compaction ``` ## MCP Tools 11 tools for AI assistants to manage memories: | Tool | Purpose | |------|---------| | `save_memory` | Save new memory with tags, entities | | `search_memory` | Search with filters and scoring (includes review candidates) | | `search_unified` | Unified search across STM + LTM | | `touch_memory` | Reinforce memory (boost strength) | | `observe_memory_usage` | Record memory usage for natural spaced repetition | | `gc` | Garbage collect low-scoring memories | | `promote_memory` | Move to long-term storage | | `cluster_memories` | Find similar memories | | `consolidate_memories` | Merge similar memories (algorithmic) | | `read_graph` | Get entire knowledge graph | | `open_memories` | Retrieve specific memories | | `create_relation` | Link memories explicitly | ### Example: Unified Search Search across STM and LTM with the CLI: ```bash mnemex-search "typescript preferences" --tags preferences --limit 5 --verbose ``` ### Example: Reinforce (Touch) Memory Boost a memory's recency/use count to slow decay: ```json { "memory_id": "mem-123", "boost_strength": true } ``` Sample response: ```json { "success": true, "memory_id": "mem-123", "old_score": 0.41, "new_score": 0.78, "use_count": 5, "strength": 1.1 } ``` ### Example: Promote Memory Suggest and promote high-value memories to the Obsidian vault. Auto-detect (dry run): ```json { "auto_detect": true, "dry_run": true } ``` Promote a specific memory: ```json { "memory_id": "mem-123", "dry_run": false, "target": "obsidian" } ``` As an MCP tool (request body): ```json { "query": "typescript preferences", "tags": ["preferences"], "limit": 5, "verbose": true } ``` ### Example: Consolidate Similar Memories Find and merge duplicate or highly similar memories to reduce clutter: Auto-detect candidates (preview): ```json { "auto_detect": true, "mode": "preview", "cohesion_threshold": 0.75 } ``` Apply consolidation to detected clusters: ```json { "auto_detect": true, "mode": "apply", "cohesion_threshold": 0.80 } ``` The tool will: - Merge content intelligently (preserving unique information) - Combine tags and entities (union) - Calculate strength based on cluster cohesion - Preserve earliest `created_at` and latest `last_used` timestamps - Create tracking relations showing consolidation history ## Mathematical Details ### Decay Curves For a memory with $n_{\text{use}}=1$, $s=1.0$, and $\lambda = 2.673 \times 10^{-6}$ (3-day half-life): | Time | Score | Status | |------|-------|--------| | 0 hours | 1.000 | Fresh | | 12 hours | 0.917 | Active | | 1 day | 0.841 | Active | | 3 days | 0.500 | Half-life | | 7 days | 0.210 | Decaying | | 14 days | 0.044 | Near forget | | 30 days | 0.001 | **Forgotten** | ### Use Count Impact With $\beta = 0.6$ (sub-linear weighting): | Use Count | Boost Factor | |-----------|--------------| | 1 | 1.0Γ— | | 5 | 2.6Γ— | | 10 | 4.0Γ— | | 50 | 11.4Γ— | Frequent access significantly extends retention. ## Documentation - **[Scoring Algorithm](docs/scoring_algorithm.md)** - Complete mathematical model with LaTeX formulas - **[Smart Prompting](docs/prompts/memory_system_prompt.md)** - Patterns for natural LLM integration - **[Architecture](docs/architecture.md)** - System design and implementation - **[API Reference](docs/api.md)** - MCP tool documentation - **[Bear Integration](docs/bear-integration.md)** - Guide to using Bear app as an LTM store - **[Graph Features](docs/graph_features.md)** - Knowledge graph usage ## Use Cases ### Personal Assistant (Balanced) - 3-day half-life - Remember preferences and decisions - Auto-promote frequently referenced information ### Development Environment (Aggressive) - 1-day half-life - Fast context switching - Aggressive forgetting of old context ### Research / Archival (Conservative) - 14-day half-life - Long retention - Comprehensive knowledge preservation ## License MIT License - See [LICENSE](LICENSE) for details. Clean-room implementation. No AGPL dependencies. ### Knowledge & Memory * [mem0ai/mem0-mcp](https://github.com/mem0ai/mem0-mcp) (Python) - A MCP server that provides a smart memory for AI to manage and reference past conversations, user preferences, and key details. * [mnemex](https://github.com/simplemindedbot/mnemex) (Python) - A Python-based MCP server that provides a human-like short-term working memory (JSONL) and long-term memory (Markdown) system for AI assistants. The core of the project is a temporal decay algorithm that causes memories to fade over time unless they are reinforced through use. * [modelcontextprotocol/server-memory](https://github.com/modelcontextprotocol/server-memory) (TypeScript) - A knowledge graph-based persistent memory system for AI. ## Related Work - [Model Context Protocol](https://github.com/modelcontextprotocol) - MCP specification - [Ebbinghaus Forgetting Curve](https://en.wikipedia.org/wiki/Forgetting_curve) - Cognitive science foundation - Research inspired by: Memoripy, Titan MCP, MemoryBank ## Citation If you use this work in research, please cite: ```bibtex @software{mnemex_2025, title = {Mnemex: Temporal Memory for AI}, author = {simplemindedbot}, year = {2025}, url = {https://github.com/simplemindedbot/mnemex}, version = {0.5.3} } ``` ## Contributing Contributions are welcome! See [CONTRIBUTING.md](CONTRIBUTING.md) for detailed instructions. ### 🚨 **Help Needed: Windows & Linux Testers!** I develop on macOS and need help testing on Windows and Linux. If you have access to these platforms, please: - Try the installation instructions - Run the test suite - Report what works and what doesn't See the [**Help Needed section**](CONTRIBUTING.md#-help-needed-windows--linux-testers) in CONTRIBUTING.md for details. ### General Contributions For all contributors, see [CONTRIBUTING.md](CONTRIBUTING.md) for: - Platform-specific setup (Windows, Linux, macOS) - Development workflow - Testing guidelines - Code style requirements - Pull request process Quick start: 1. Read [CONTRIBUTING.md](CONTRIBUTING.md) for platform-specific setup 2. Understand the [Architecture docs](docs/architecture.md) 3. Review the [Scoring Algorithm](docs/scoring_algorithm.md) 4. Follow existing code patterns 5. Add tests for new features 6. Update documentation ## Status **Version:** 1.0.0 **Status:** Research implementation - functional but evolving ### Phase 1 (Complete) βœ… - 10 MCP tools - Temporal decay algorithm - Knowledge graph ### Phase 2 (Complete) βœ… - JSONL storage - LTM index - Git integration - Smart prompting documentation - Maintenance CLI - Memory consolidation (algorithmic merging) ### Future Work - Spaced repetition optimization - Adaptive decay parameters - Performance benchmarks - LLM-assisted consolidation (optional enhancement) --- **Built with** [Claude Code](https://claude.com/claude-code) πŸ€–

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mnemexai/mnemex'

If you have feedback or need assistance with the MCP directory API, please join our Discord server