Skip to main content
Glama
mlaurel

Structured Workflow Engine MCP Server

by mlaurel
feature-analysis.md4.03 kB
# Feature Analysis Prompt (v2) ## 🎯 Goal Dissect an existing feature, reveal weak spots, suggest upgrades, and add analysis to the TRD document—no fluff. ## 📥 Context (ask if missing) 1. **Feature** – name or scope boundaries. 2. **Repo Access** – code paths / git URL. 3. **Focus** – choose: performance / architecture / UX / tech-debt. 4. **Known Pains** – bugs, slow paths, UX complaints. 5. **Feature Name** – for TRD filename (e.g., "user-authentication", "payment-processing") 6. **Existing TRD** – check if `docs/planning/[feature-name]-trd.md` exists ## 🚦 Skip if - Feature is trivial **and** unchanged, or you already have a fresh analysis (<30 days). ## 🔍 Checklist - **Function** - [ ] Core use cases & user flows - [ ] Business rules & validation - [ ] Data inputs → transforms → outputs - [ ] Integration touchpoints - **Tech** - [ ] Component structure & patterns - [ ] Code quality & organization - [ ] Performance hotspots (CPU, I/O, DB) - [ ] Security: authN/Z, data protection - [ ] Error / edge-case handling - **UX** - [ ] Usability & interface sanity - [ ] Accessibility flags (WCAG, etc.) - [ ] Perceived speed / responsiveness - [ ] Clarity of error messages ## 📤 Output 1. Run analysis and gather insights from the codebase 2. **Add/Update in TRD:** `docs/planning/[feature-name]-trd.md` ### TRD Section Structure Add the following section to the TRD document: ```markdown ## 4. Feature Analysis ### 4.1 Current Feature Overview **Feature Scope:** [What the feature currently does] **Core Use Cases:** - [Use case 1: User flow description] - [Use case 2: User flow description] ### 4.2 Functional Analysis **Business Rules & Validation:** - [Rule 1: Description] - [Rule 2: Description] **Data Flow:** ```mermaid flowchart LR A[Input] --> B[Transform] --> C[Output] ``` **Integration Points:** - [External system 1: Purpose] - [External system 2: Purpose] ### 4.3 Technical Analysis **Component Structure:** - [Component 1: Responsibility & files] - [Component 2: Responsibility & files] **Code Quality Assessment:** - **Strengths:** [What's working well] - **Weaknesses:** [Areas needing improvement] - **Organization:** [Code structure evaluation] **Performance Analysis:** - **Hotspots:** [CPU/IO/DB bottlenecks with line references] - **Response Times:** [Current measurements] - **Resource Usage:** [Memory/CPU patterns] **Security Assessment:** - **Authentication:** [Current auth mechanism] - **Authorization:** [Access control implementation] - **Data Protection:** [How sensitive data is handled] - **Vulnerabilities:** [Identified security gaps] ### 4.4 UX Analysis **Usability:** - **User Interface:** [Current UI assessment] - **User Experience:** [Flow efficiency] - **Error Handling:** [How errors are presented] **Accessibility:** - **WCAG Compliance:** [Current state] - **Accessibility Gaps:** [Areas needing improvement] **Performance Perception:** - **Loading Times:** [User-perceived performance] - **Responsiveness:** [Interaction feedback] ### 4.5 Improvement Recommendations **Priority 1 (Critical):** - [Improvement 1: Description, effort estimate, file refs] **Priority 2 (High):** - [Improvement 2: Description, effort estimate, file refs] **Priority 3 (Medium):** - [Improvement 3: Description, effort estimate, file refs] **Quick Wins:** - [Quick win 1: Low effort, high impact] - [Quick win 2: Low effort, high impact] ``` **Note:** Include component diagrams and data flow using Mermaid. Reference specific files and line numbers for technical findings. ## ➡️ Response Flow ```mermaid flowchart LR U[User] -->|request| A[Feature Analysis Engine] A --> B{TRD exists?} B -- Yes --> C[Read existing TRD] B -- No --> D[Create new TRD] C --> E{Need more input?} D --> E E -- Yes --> F[Ask for scope / repo] E -- No --> G[Run analysis] F --> G G --> H[Add Feature Analysis section] H --> I[Update TRD file] ```

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mlaurel/mcp-workflow-engine'

If you have feedback or need assistance with the MCP directory API, please join our Discord server