# Project Overview
Containerized Strands Agents is an MCP (Model Context Protocol) server that hosts isolated
Strands AI agents in Docker containers. Each agent runs independently with its own workspace,
persists conversation history across restarts, and supports custom system prompts, per-agent
tools, and GitHub integration. The fire-and-forget architecture enables autonomous background
task execution while the host manages container lifecycle, idle timeouts, and session persistence.
## Repository Structure
- `src/containerized_strands_agents/` — Core package:
- `server.py` — MCP server (FastMCP tools)
- `agent_manager.py` — Docker orchestration, container lifecycle
- `agent.py` — Shared agent logic (create_agent, run_agent)
- `cli.py` — CLI commands (snapshot, restore, run)
- `config.py` — Configuration constants
- `docker/` — Docker image: FastAPI runner, GitHub tools, requirements
- `ui/` — Optional web UI: FastAPI REST wrapper and HTML interface
- `scripts/` — Shell scripts for building Docker image and running the server
- `tests/` — Unit, integration, and end-to-end tests using pytest
- `templates/` — GitHub Actions workflow template for running agents in CI
- `.github/workflows/` — CI and PyPI publishing workflows
- `data/` — Runtime persistence (gitignored): agent workspaces, sessions, task registry
## Build & Development Commands
```bash
# Install in development mode
pip install -e ".[dev]"
# Install with web UI support
pip install -e ".[webui]"
# Or use Makefile
make dev # Install with all dependencies
make test # Run unit tests
make test-all # Run all tests (requires Docker)
make build # Build wheel and sdist
make docker # Build Docker image
# Build Docker image (auto-built on first use, or manually)
./scripts/build_docker.sh
# Run MCP server (for use with Kiro, Claude Desktop, etc.)
containerized-strands-agents-server
# or
python -m containerized_strands_agents.server
# Run web UI (finds free port 8000-8100)
containerized-strands-agents-webui
# Run tests
python -m pytest tests/ -v
```
## CLI Commands
```bash
# Create a snapshot (backup) of an agent
containerized-strands-agents snapshot --data-dir ./my-agent --output snapshot.zip
# Restore an agent from snapshot
containerized-strands-agents restore --snapshot snapshot.zip --data-dir ./restored-agent
# Run an agent directly (no Docker)
containerized-strands-agents run --data-dir ./my-agent --message "do the thing"
# Pull agent state from GitHub Actions artifact
containerized-strands-agents pull --repo owner/repo --run-id 12345 --data-dir ./my-agent
```
## Code Style & Conventions
- Python 3.11+ required; type hints used throughout
- Formatting: Standard Python conventions; ~100 char line length preferred
- Naming: `snake_case` for functions/variables, `PascalCase` for classes, `UPPER_SNAKE` for
constants
- Async/await pattern for all I/O operations (Docker, HTTP, file system)
- Pydantic models for data validation (`AgentInfo`, request/response schemas)
- Logging via `logging` module; use `logger.info/warning/error` appropriately
- Environment variables prefixed with `CONTAINERIZED_AGENTS_` or `AGENT_HOST_`
- Docstrings: Google style for public functions and classes
> TODO: Add pre-commit hooks configuration for automated linting
## Architecture Notes
```
┌─────────────────────────────────────────────────────────────────────────────┐
│ MCP Client (Kiro, etc.) │
└─────────────────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────────────────┐
│ FastMCP Server (server.py) │
│ Tools: send_message, get_messages, list_agents, stop_agent │
└─────────────────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────────────────┐
│ AgentManager (agent_manager.py) │
│ - Docker container lifecycle (create, start, stop) │
│ - TaskTracker: JSON-based agent registry persistence │
│ - Idle monitor: auto-stop containers after timeout │
│ - System prompt & tool management │
└─────────────────────────────────────────────────────────────────────────────┘
│
┌──────────────────┼──────────────────┐
▼ ▼ ▼
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Container 1 │ │ Container 2 │ │ Container N │
│ (agent-foo) │ │ (agent-bar) │ │ ... │
│ │ │ │ │ │
│ FastAPI:8080 │ │ FastAPI:8080 │ │ FastAPI:8080 │
│ Strands Agent│ │ Strands Agent│ │ Strands Agent│
└──────────────┘ └──────────────┘ └──────────────┘
│ │ │
▼ ▼ ▼
┌──────────────────────────────────────────────────┐
│ Host File System │
│ data/agents/{agent_id}/ │
│ ├── workspace/ (agent's files) │
│ └── .agent/ │
│ ├── session/ (conversation history) │
│ ├── tools/ (per-agent tools) │
│ ├── runner/ (agent code for GHA) │
│ └── system_prompt.txt │
└──────────────────────────────────────────────────┘
```
**Data Flow:**
1. MCP client calls `send_message` with agent_id and message
2. AgentManager creates/restarts Docker container if needed
3. Message dispatched to container's `/chat` endpoint (fire-and-forget)
4. Strands Agent processes message using available tools
5. FileSessionManager persists conversation to mounted volume
6. Client polls `get_messages` to retrieve results when needed
**Key Components:**
- `FastMCP`: MCP protocol implementation exposing tools to clients
- `AgentManager`: Orchestrates Docker containers, manages state via `TaskTracker`
- `agent.py`: Shared agent logic used by both Docker runner and CLI
- `agent_runner.py`: FastAPI server inside container running Strands Agent
- `FileSessionManager`: Persists agent conversation history to JSON files
- `SummarizingConversationManager`: Intelligently summarizes old messages to manage context
## Snapshots & Portability
Agents can be snapshotted (backed up) and restored anywhere. A snapshot is just a zip of the
agent's data directory.
**What's included in a snapshot:**
- `workspace/` — Agent's files (repos, code, etc.)
- `.agent/session/` — Conversation history (agent remembers context)
- `.agent/tools/` — Custom tools
- `.agent/runner/` — Agent code (for running without Docker)
- `.agent/system_prompt.txt` — Custom system prompt
**Snapshot workflow:**
```bash
# 1. Create snapshot
containerized-strands-agents snapshot --data-dir ./data/agents/my-agent --output backup.zip
# 2. Restore anywhere
containerized-strands-agents restore --snapshot backup.zip --data-dir ./new-location
# 3. Run restored agent (Docker or CLI)
containerized-strands-agents run --data-dir ./new-location --message "continue where you left off"
```
**Portability:**
- Snapshots work across machines (same OS)
- Session uses hardcoded agent ID ("agent") so any restored snapshot continues the same conversation
- Can run in Docker (via MCP server) or standalone (via CLI `run` command)
- Designed for GitHub Actions: restore snapshot → run agent → upload new snapshot
## Testing Strategy
| Type | Location | Runner | Notes |
|-------------|-----------------------------|---------------------------------|--------------------------------|
| Unit | `tests/test_agent_manager.py` | `pytest` | Mocked Docker, fast |
| Unit | `tests/test_custom_system_prompt*.py` | `pytest` | System prompt handling |
| Integration | `tests/test_integration.py` | `pytest` (requires Docker) | Real containers, short tasks |
| E2E | `tests/test_e2e.py` | `pytest` (requires Docker+AWS) | Full agent flow with Bedrock |
```bash
# Run all tests
python -m pytest tests/ -v
# Run only unit tests (no Docker required)
python -m pytest tests/test_agent_manager.py tests/test_custom_system_prompt.py -v
# Run integration tests
python -m pytest tests/test_integration.py -v --timeout=120
# Run with coverage (if pytest-cov installed)
python -m pytest tests/ --cov=src/containerized_strands_agents --cov-report=html
```
Tests use `pytest-asyncio` with `asyncio_mode = "auto"` configured in `pyproject.toml`.
## CI/CD & Publishing
**GitHub Actions Workflows:**
- `.github/workflows/ci.yml` — Runs tests on push/PR (Python 3.11-3.13)
- `.github/workflows/publish.yml` — Publishes to PyPI on GitHub release
**Publishing to PyPI:**
Via GitHub (recommended):
1. Update version in `pyproject.toml` and `src/containerized_strands_agents/__init__.py`
2. Create a GitHub release with tag matching version (e.g., `v0.1.0`)
3. Publish workflow runs automatically
Via local commands:
```bash
make build # Build wheel and sdist
make publish-test # Publish to TestPyPI (for testing)
make publish # Publish to PyPI
```
**PyPI Trusted Publisher Setup:**
1. Go to repo Settings → Environments → Create "pypi"
2. Go to PyPI → Account → Publishing → Add trusted publisher:
- Owner: `mkmeral`
- Repository: `containerized-strands-agents`
- Workflow: `publish.yml`
## Security & Compliance
**Secrets Handling:**
- AWS credentials: Mounted read-only from `~/.aws/` into containers
- GitHub token: Passed via `CONTAINERIZED_AGENTS_GITHUB_TOKEN` environment variable
- API keys (OpenAI, Google): Passed via environment variables, never logged
- System prompts can contain sensitive instructions; stored in agent data directories
**Container Isolation:**
- Each agent runs in isolated Docker container on `agent-host-net` bridge network
- Workspace mounted read-write; AWS credentials mounted read-only
- Tools directory mounted read-only to prevent agent modification
- `BYPASS_TOOL_CONSENT=true` set for automated operation (agents can execute tools freely)
**Dependency Scanning:**
> TODO: Add dependabot or similar for automated dependency updates
**License:** MIT (see LICENSE file)
## Agent Guardrails
**Files Never Modified by Agents:**
- Host system files outside mounted volumes
- `~/.aws/credentials` (read-only mount)
- Docker configuration and images
- MCP server source code
**Automatic Safeguards:**
- Idle timeout: Containers auto-stop after `AGENT_HOST_IDLE_TIMEOUT` minutes (default: 720/12hrs)
- Container isolation: Agents cannot access host network or other containers directly
- Retry limits: Max 3 retries with exponential backoff for transient errors
**Recommended Reviews:**
- Review agent output before committing to external repositories
- Audit `data/agents/*/workspace/` for unexpected file creation
- Monitor container resource usage for runaway processes
**Rate Limits:**
- Bedrock/Claude API rate limits apply per AWS account
- GitHub API rate limits apply per token (5000 requests/hour for authenticated)
## Extensibility Hooks
**Environment Variables:**
| Variable | Default | Description |
|----------|---------|-------------|
| `CONTAINERIZED_STRANDS_DATA_DIR` | `./data` | Base directory for all persistence |
| `AGENT_HOST_IDLE_TIMEOUT` | `720` | Minutes before idle container stops |
| `CONTAINERIZED_AGENTS_GITHUB_TOKEN` | — | GitHub PAT for git operations |
| `CONTAINERIZED_AGENTS_SYSTEM_PROMPTS` | — | Comma-separated paths to prompt files |
| `CONTAINERIZED_AGENTS_TOOLS` | — | Path to global tools directory |
| `CONTAINERIZED_AGENTS_MCP_CONFIG` | — | Path to default mcp.json for all agents |
| `OPENAI_API_KEY` | — | Passed to containers for OpenAI models |
| `GOOGLE_API_KEY` | — | Passed to containers for Gemini models |
| `AWS_BEARER_TOKEN_BEDROCK` | — | Cross-account Bedrock access |
**Per-Agent Customization:**
- `description`: Brief description of the agent's purpose (shown in list_agents and web UI)
- `system_prompt`: Custom instructions via text or file path
- `tools`: List of `.py` files to load as additional Strands tools
- `data_dir`: Custom data directory for project-specific agents
- `aws_profile`: Different AWS credentials per agent
- `aws_region`: Different Bedrock region per agent
- `mcp_config`: MCP server configuration dict (same format as Kiro/Claude Desktop)
- `mcp_config_file`: Path to existing mcp.json file on host
**MCP Server Support:**
Agents can connect to MCP (Model Context Protocol) servers for additional tools. Configuration uses the same format as Kiro/Claude Desktop:
```json
// data/agents/my-agent/.agent/mcp.json
{
"mcpServers": {
"github": {
"command": "uvx",
"args": ["mcp-server-github"],
"env": {"GITHUB_TOKEN": "..."},
"disabled": false
},
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/workspace"]
}
}
}
```
Configuration precedence (highest to lowest):
1. Per-agent `mcp_config_file` parameter (path to mcp.json)
2. Per-agent `mcp_config` parameter (inline dict)
3. Agent's persisted config (`.agent/mcp.json`)
4. Global default (`CONTAINERIZED_AGENTS_MCP_CONFIG` env var)
Example usage:
```python
# Point to existing Kiro config
send_message(
agent_id="reviewer",
message="Review this PR",
mcp_config_file="~/.kiro/settings/mcp.json"
)
# Or inline config
send_message(
agent_id="researcher",
message="Search for docs",
mcp_config={
"mcpServers": {
"aws-docs": {
"command": "uvx",
"args": ["awslabs.aws-documentation-mcp-server@latest"]
}
}
}
)
```
**Adding New Tools:**
1. Create `.py` file with `@tool` decorated functions (Strands tools format)
2. Place in global tools directory (`CONTAINERIZED_AGENTS_TOOLS`) or pass via `tools` parameter
3. Tools are copied to agent's `/app/tools/` and loaded via `load_tool` at startup
**Web UI Extension:**
- REST API at `ui/api.py` wraps MCP tools for HTTP access
- Extend by adding new FastAPI routes
- Static UI served from `ui/index.html`
## Further Reading
- [README.md](README.md) — Quick start guide and MCP configuration
- [docker/Dockerfile](docker/Dockerfile) — Container image specification
- [docker/agent_runner.py](docker/agent_runner.py) — In-container agent implementation
> TODO: Add docs/ARCHITECTURE.md with detailed design decisions
> TODO: Add docs/TROUBLESHOOTING.md for common issues
> TODO: Add ADR (Architecture Decision Records) directory