Skip to main content
Glama
impact_analysis_agent.py•1.75 kB
""" Impact Analysis Agent - Placeholder implementation """ import sys from pathlib import Path # Add parent directory to path for imports sys.path.insert(0, str(Path(__file__).parent.parent)) from models.request import AgentRequest from models.response import AgentResponse from loguru import logger class ImpactAnalysisAgent: """Agent for analyzing change impact""" async def run(self, request: AgentRequest) -> AgentResponse: """ Analyze impact of a proposed change Args: request: AgentRequest with change description and context Returns: AgentResponse with impact analysis """ try: target = request.context.get("target", "unknown") message = request.message logger.info(f"Analyzing impact for: {target}") # Placeholder implementation # TODO: Implement actual call graph and dependency analysis result = f"""Impact Analysis for: {target} Change Description: {message} Affected Components: - Direct dependencies: 0 (placeholder) - Indirect dependencies: 0 (placeholder) - Risk Level: Medium (placeholder) Recommendations: - Review related files before implementing - Consider backward compatibility - Test thoroughly Note: This is a placeholder implementation. Implement actual graph analysis using your existing infrastructure.""" return AgentResponse(success=True, response=result) except Exception as e: logger.error(f"Impact analysis failed: {e}") return AgentResponse( success=False, response=f"Error: {str(e)}" )

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mjdevaccount/AIStack-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server