# MCP Toolkit Test Results
## Prerequisites Check ✅
- ✅ **Server Script**: `mcp_intelligence_server.py` exists and is executable
- ✅ **Python Environment**: Virtual environment created and dependencies installed
- ✅ **Ollama**: Running with required models:
- `qwen3:8b` ✅
- `phi4:14b` ✅
- `mxbai-embed-large` ✅
- ✅ **Qdrant**: Running on http://localhost:6333
- ✅ **Workspace**: C:\AIStack exists with Python files
## Configuration ✅
- ✅ **MCP Settings**: `.cursor/mcp_settings.json` configured with:
- filesystem (uses `${workspaceFolder}`)
- git (uses `${workspaceFolder}`)
- github (token configured)
- code-intelligence (points to server script)
## Testing Instructions
### Step 1: Verify MCP Settings in Cursor
1. Check if MCP settings are in Cursor config:
```powershell
Test-Path "$env:APPDATA\Cursor\User\mcp_settings.json"
```
2. If not present, copy them:
```powershell
Copy-Item C:\AIStack-MCP\.cursor\mcp_settings.json "$env:APPDATA\Cursor\User\mcp_settings.json"
```
### Step 2: Open Project in Cursor
```powershell
cd C:\AIStack
cursor .
```
### Step 3: Test in Cursor Chat
**Test 1: Index Workspace**
```
Use code-intelligence to index_workspace with file_extensions .py,.js,.ts and max_files 100
```
Expected: Should start indexing files and return summary like "✓ Indexed X files with Y chunks"
**Test 2: Semantic Search**
```
Use code-intelligence to semantic_search for query 'error handling' with max_results 5
```
Expected: Should return relevant code snippets from C:\AIStack
**Test 3: Pattern Analysis**
```
Use code-intelligence to analyze_patterns for pattern_type 'async' with max_examples 3
```
Expected: Should analyze async patterns in the codebase
## Troubleshooting
### If MCP servers don't appear:
1. **Check Cursor logs**: Help > Toggle Developer Tools > Console
2. **Verify Python path**: The server uses `python` command - ensure it's in PATH
3. **Check server path**: Verify `C:\AIStack-MCP\mcp_intelligence_server.py` exists
### If indexing fails:
- Check Qdrant is running: `curl http://localhost:6333/collections`
- Check Ollama is running: `ollama list`
- Verify workspace path is correct
### If search returns "not indexed":
- Run `index_workspace` first
- Check Qdrant collection was created
- Verify files match the extensions specified
## Next Steps
After successful testing:
1. ✅ Index your main projects
2. ✅ Use semantic search for code discovery
3. ✅ Use pattern analysis to understand codebase
4. ✅ Use code generation for new features
## Notes
- The server uses `qwen3:8b` (updated from qwen2.5:8b)
- Each workspace gets its own Qdrant collection
- Indexing only needs to run once per project
- Search works across all indexed files
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/mjdevaccount/AIStack-MCP'
If you have feedback or need assistance with the MCP directory API, please join our Discord server