Skip to main content
Glama

MCP TypeScript Template

wrangler.toml2.74 kB
# The name of your worker. name = "mcp-ts-template-worker" # The main entry point for your worker. Wrangler will build this file. main = "src/worker.ts" # The compatibility date ensures your worker runs on a recent version of the Workers runtime. # It's good practice to update this periodically. compatibility_date = "2025-09-24" # Enable Node.js compatibility for Bun and other dependencies. compatibility_flags = ["nodejs_compat"] # Environment variables for your worker. # Use `wrangler secret put <NAME>` to add secrets for sensitive values. # Note: Non-sensitive config can be set here, secrets should use wrangler CLI. [vars] ENVIRONMENT = "production" LOG_LEVEL = "info" STORAGE_PROVIDER_TYPE = "in-memory" # Options: "in-memory", "cloudflare-kv", "cloudflare-r2" # MCP_ALLOWED_ORIGINS = "https://example.com,https://app.example.com" # --- SECRETS (Add via CLI) --- # Run these commands to add sensitive configuration: # wrangler secret put MCP_AUTH_SECRET_KEY # wrangler secret put OPENROUTER_API_KEY # wrangler secret put SUPABASE_URL # wrangler secret put SUPABASE_ANON_KEY # wrangler secret put SUPABASE_SERVICE_ROLE_KEY # wrangler secret put OAUTH_ISSUER_URL # wrangler secret put OAUTH_AUDIENCE # wrangler secret put SPEECH_TTS_API_KEY # wrangler secret put SPEECH_STT_API_KEY # --- SERVICE BINDINGS --- # Uncomment and configure the bindings you need for your MCP server. # The binding names MUST match those defined in src/worker.ts CloudflareBindings interface. # KV Namespace for fast key-value storage # To create: wrangler kv namespace create KV_NAMESPACE # wrangler kv namespace create KV_NAMESPACE --preview # Then uncomment and add the IDs: # [[kv_namespaces]] # binding = "KV_NAMESPACE" # id = "your-production-kv-namespace-id-here" # preview_id = "your-preview-kv-namespace-id-here" # R2 Bucket for object storage # To create: wrangler r2 bucket create mcp-storage # Then uncomment: # [[r2_buckets]] # binding = "R2_BUCKET" # bucket_name = "mcp-storage" # preview_bucket_name = "mcp-storage-preview" # D1 Database for relational data # To create: wrangler d1 create mcp-database # Copy the database_id from output # [[d1_databases]] # binding = "DB" # database_name = "mcp-database" # database_id = "your-database-id-here" # preview_database_id = "your-preview-database-id-here" # Cloudflare AI for inference # No setup needed - enabled by default for Workers with AI access # [ai] # binding = "AI" # --- ADVANCED CONFIGURATION --- # Enable observability for better monitoring and debugging. [observability] enabled = true head_sampling_rate = 1 # Example for Cron Triggers to run scheduled tasks. # [triggers] # crons = ["0 */6 * * *"] # Run every 6 hours

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mintedmaterial/mcp-ts-template'

If you have feedback or need assistance with the MCP directory API, please join our Discord server