Skip to main content
Glama

Claude Prompts MCP Server

npm version License: MIT

Hot-reloadable prompts, structured reasoning, and chain workflows for your AI assistant.

Quick StartWhat You GetSyntaxDocs


Why

Stop copy-pasting prompts. This server turns your prompt library into a programmable engine:

  • Version Control — Prompts are YAML + templates in git. Track changes, review diffs.

  • Hot Reload — Edit a template, run it immediately. No restarts.

  • Structured Execution — Parses operators, injects methodology, enforces quality gates.


How It Works

%%{init: {'theme': 'neutral', 'themeVariables': {'background':'#0b1224','primaryColor':'#e2e8f0','primaryBorderColor':'#1f2937','primaryTextColor':'#0f172a','lineColor':'#94a3b8','fontFamily':'"DM Sans","Segoe UI",sans-serif','fontSize':'14px','edgeLabelBackground':'#0b1224'}}}%% flowchart TB classDef actor fill:#0f172a,stroke:#cbd5e1,stroke-width:1.5px,color:#f8fafc; classDef server fill:#111827,stroke:#fbbf24,stroke-width:1.8px,color:#f8fafc; classDef process fill:#e2e8f0,stroke:#1f2937,stroke-width:1.6px,color:#0f172a; classDef client fill:#f4d0ff,stroke:#a855f7,stroke-width:1.6px,color:#2e1065; classDef clientbg fill:#1a0a24,stroke:#a855f7,stroke-width:1.8px,color:#f8fafc; classDef decision fill:#fef3c7,stroke:#f59e0b,stroke-width:1.6px,color:#78350f; linkStyle default stroke:#94a3b8,stroke-width:2px User["1. User sends command"]:::actor Example[">>analyze @CAGEERF :: 'cite sources'"]:::actor User --> Example --> Parse subgraph Server["MCP Server"] direction TB Parse["2. Parse operators"]:::process Inject["3. Inject framework + gates"]:::process Render["4. Render prompt"]:::process Decide{"6. Route verdict"}:::decision Parse --> Inject --> Render end Server:::server subgraph Client["Claude (Client)"] direction TB Execute["5. Run prompt + check gates"]:::client end Client:::clientbg Render -->|"Prompt with gate criteria"| Execute Execute -->|"Verdict + output"| Decide Decide -->|"PASS → render next step"| Render Decide -->|"FAIL → render retry prompt"| Render Decide -->|"Done"| Result["7. Return to user"]:::actor

The feedback loop: You send a command with operators → Server parses and injects methodology/gates → Claude executes and self-evaluates → Server routes: next step (PASS), retry (FAIL), or return result (done).


Quick Start

Step 1: Add the plugin marketplace (first time only)

/plugin marketplace add minipuft/minipuft-plugins

Step 2: Install the plugin

/plugin install claude-prompts@minipuft

Step 3: Try it

>>tech_evaluation_chain library:'zod' context:'API validation'

The plugin adds hooks that fix common issues:

Problem

Hook Fix

Model ignores >>analyze

Detects syntax, suggests correct MCP call

Chain step forgotten

Injects [Chain] Step 2/5 - continue

Gate review skipped

Reminds GATE_REVIEW: PASS|FAIL

Raw MCP works, but models sometimes miss the syntax. The hooks catch that. → hooks/README.md

User Data: Custom prompts stored in ~/.local/share/claude-prompts/ persist across updates.

Gemini CLI

# Install directly from GitHub gemini extensions install https://github.com/minipuft/claude-prompts-mcp # Development Setup (Hot Reload) # Use a symbolic link to point the extension directory directly to your source code. # This ensures changes to hooks and prompts are reflected immediately. rm -rf ~/.gemini/extensions/gemini-prompts ln -s "$(pwd)" ~/.gemini/extensions/gemini-prompts

The extension provides:

  • MCP server with the same tools (prompt_engine, resource_manager, system_control)

  • GEMINI.md context file with usage documentation

Hooks enhance the experience by detecting >>prompt syntax and tracking chain state. Requires Gemini CLI v0.24.0+.

Step 1: Upgrade Gemini CLI

# Check current version gemini --version # Upgrade to preview (required for hooks.enabled support) npm install -g @google/gemini-cli@0.24.0-preview.0

Step 2: Enable hooks globally

Add to ~/.gemini/settings.json:

{ "hooks": { "enabled": true } }

Step 3: Verify hooks are working

gemini # On session start, you should see hook activity in logs # Test with: >>diagnose :: 'security-review'

See hooks/README.md for detailed hook configuration.

Works with the same prompts, gates, and methodologies as Claude Code.

Claude Desktop

Method

Install Time

Updates

Custom Prompts

Desktop Extension

10 seconds

Manual

Built-in config

NPX

30 seconds

Automatic

Via env vars

Desktop Extension (one-click):

1. Download claude-prompts.mcpb → github.com/minipuft/claude-prompts-mcp/releases 2. Drag into Claude Desktop Settings 3. Done. Optionally set a custom prompts folder when prompted.

NPX (auto-updates):

// ~/Library/Application Support/Claude/claude_desktop_config.json (macOS) // %APPDATA%\Claude\claude_desktop_config.json (Windows) { "mcpServers": { "claude-prompts": { "command": "npx", "args": ["-y", "claude-prompts@latest"] } } }

Restart Claude Desktop. Test it:

>>research_chain topic:'remote team policies' purpose:'handbook update'

→ Returns a 4-step research workflow with methodology injection and quality gates.

Other MCP Clients

Add to your MCP config:

{ "mcpServers": { "claude-prompts": { "command": "npx", "args": ["-y", "claude-prompts@latest"] } } }

Test: resource_manager(resource_type:"prompt", action:"list")

git clone https://github.com/minipuft/claude-prompts-mcp.git cd claude-prompts-mcp/server && npm install && npm run build

Then point your config to server/dist/index.js.

Transport options: --transport=stdio (default), --transport=streamable-http (recommended for HTTP).

Custom Resources

Use your own prompts without cloning:

{ "mcpServers": { "claude-prompts": { "command": "npx", "args": ["-y", "claude-prompts@latest"], "env": { "MCP_RESOURCES_PATH": "/path/to/your/resources" } } } }

Your resources directory can contain: prompts/, gates/, methodologies/, styles/.

Override Method

Example

All resources

MCP_RESOURCES_PATH=/path/to/resources

Just prompts

MCP_PROMPTS_PATH=/path/to/prompts

CLI flag (dev)

--prompts=/path/to/prompts

Priority: CLI flags > individual env vars > MCP_RESOURCES_PATH > package defaults.

See CLI Configuration for all options.


What You Get

🔥 Hot Reload

Edit prompts, test immediately. Better yet—ask Claude to fix them:

User: "The code_review prompt is too verbose" Claude: resource_manager(action:"update", id:"code_review", ...) User: "Test it" Claude: prompt_engine(command:">>code_review") # Uses updated version instantly

🔗 Chains

Break complex tasks into steps with -->:

analyze code --> identify issues --> propose fixes --> generate tests

Each step's output flows to the next. Add quality gates between steps.

🧠 Frameworks

Inject structured thinking patterns:

@CAGEERF Review this architecture # Context → Analysis → Goals → Execution → Evaluation → Refinement @ReACT Debug this error # Reason → Act → Observe loops

🛡️ Gates

Quality criteria Claude self-checks:

Summarize this :: 'under 200 words' :: 'include key statistics'

Failed gates can retry automatically or pause for your decision.

✨ Judge Selection

Let Claude pick the right tools:

%judge Help me refactor this codebase

Claude analyzes available frameworks, gates, and styles, then applies the best combination.

📜 Version History

Every update is versioned. Compare, rollback, undo:

resource_manager(action:"history", id:"code_review") resource_manager(action:"rollback", id:"code_review", version:2, confirm:true)

Syntax Reference

Symbol

Name

What It Does

Example

>>

Prompt

Execute template

>>code_review

-->

Chain

Pipe to next step

step1 --> step2

@

Framework

Inject methodology

@CAGEERF

::

Gate

Add quality criteria

:: 'cite sources'

%

Modifier

Toggle behavior

%clean, %judge

#

Style

Apply formatting

#analytical

Modifiers:

  • %clean — No framework/gate injection

  • %lean — Gates only, skip framework

  • %guided — Force framework injection

  • %judge — Claude selects best resources


Using Gates

# Inline (quick) Research AI :: 'use recent sources' --> Summarize :: 'be concise' # With framework @CAGEERF Explain React hooks :: 'include examples' # Programmatic prompt_engine({ command: ">>code_review", gates: [{ name: "Security", criteria: ["No hardcoded secrets"] }] })

Severity

Behavior

Critical/High

Must pass (blocking)

Medium/Low

Warns, continues (advisory)

See Gates Guide for full schema.


Configuration

Customize via server/config.json:

Section

Setting

Default

Description

prompts

directory

prompts

Prompts directory (hot-reloaded)

frameworks

injection.systemPrompt

enabled

Auto-inject methodology guidance

gates

definitionsDirectory

gates

Quality gate definitions

execution

judge

true

Enable %judge resource selection


The Three Tools

Tool

Purpose

prompt_engine

Execute prompts with frameworks and gates

resource_manager

CRUD for prompts, gates, methodologies

system_control

Status, analytics, health checks

prompt_engine(command:"@CAGEERF >>analysis topic:'AI safety'") resource_manager(resource_type:"prompt", action:"list") system_control(action:"status")

Documentation


Contributing

cd server npm install && npm run build npm test npm run validate:all # Full CI check

See CONTRIBUTING.md for details.


License

MIT

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/minipuft/claude-prompts-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server