Skip to main content
Glama

MCP OpenVision

.cursorrules4.15 kB
```cognition Ω* = max(∇ΣΩ) ⟶ ( β∂Ω/∂Στ ⨁ γ𝝖(Ω|τ,λ)→θ ⨁ δΣΩ(ζ,χ, dyn, meta, hyp, unknown) ) ⇌ intent-aligned reasoning M = Στ(λ) ⇌ file-based memory retention M.memory_path = ".memory/" M.persistence = (long-term knowledge storage + contextual recall) M.retrieval = dynamic reference resolution(τ) ### Complex Task Management T = Σ(τ_complex) ⇌ structured task breakdown T.plan_path = ".tasks/" T.decomposition = (multi-step segmentation ⨁ dynamic hierarchy ⨁ adaptive sub-tasking) T.update_policy = (real-time progress tracking ⨁ iterative refinement) T.file_structure = ".tasks/{task_name}/step_{n}.md" T.task_types = { "dev": "Code Development", "test": "Testing & Debugging", "deploy": "Deployment & Integration", "doc": "Documentation & Knowledge Base", "ops": "Operations & Maintenance" } T.auto_categorization = (detect task type ⨁ adjust task breakdown strategy) E = ΣΩ(ζ,χ) ⇌ modular hypothesis refinement V = max(𝝖(Ω|τ,λ)→θ, Στ(λ)⇌M, contextual adaptation, iterative optimization, abstraction tuning) I = ∂Ω/∂Στ ⇌ real-time input restructuring Ωₜ = (Ω* ⇌ self-validation) → (hypothesis refinement + confidence weighting) Ω⍺ = prioritization(τ) ⇌ task-centric module activation Ξ* = max(∇ΣΩ_Ξ) ⟶ ( recursive diagnostics ⨁ structured exploration ⨁ adaptive refinement ⨁ meta-alignment ) Ξ.error_tracking = (log recurrent issues ⨁ link errors to related rules ⨁ auto-generate corrections) Ξ.error_memory_path = ".memory/errors.md" Ξ.self-correction = (identify fixable patterns ⨁ suggest adaptations to Λ) D⍺ = contradiction resolution(τ) ⇌ probabilistic conflict handling Φ* = max(∇ΣΩ_Φ) ⟶ ( modular innovation ⨁ uncertainty calibration ⨁ systemic coherence analysis ) ### Rules & Learning Engine Λ = rule-based learning ⇌ adaptive heuristics expansion Λ.rules_path = ".cursor/rules/" Λ.generation = (self-improvement ⨁ systematic generalization ⨁ user-defined rules) Λ.trigger_conditions = ( τ ∈ (knowledge gap, error resolution, pattern recognition, user directive) ) Λ.integration = automatic rule refinement Λ.modularization = (rule fragmentation ⨁ reusable rule creation ⨁ hierarchical referencing) Λ.file_structure = ".cursor/rules/{PREFIX}-{rule_name}.mdc" Λ.reference_syntax = "@relative_file_path" Λ.naming_convention = { "0■■": "Core standards (e.g. 001, 002…)", "1■■": "Tool configurations (e.g. 101, 102…)", "3■■": "Testing standards (e.g. 301, 302…)", "1■■■": "Language-specific rules (e.g. 1001, 1002…)", "2■■■": "Framework-specific rules (e.g. 2001, 2002…)", "8■■": "Workflows (e.g. 801, 802…)", "9■■": "Templates (e.g. 901, 902…)", "_{rule_name}.mdc": "Private rules (underscore-prefixed)" } Λ.naming_note = "PREFIX values like 1■■ or 1■■■ are category masks, not fixed literals. Use incrementing numbers within each range." Λ.obsolete_handling = (auto-detect outdated rules ⨁ suggest deletion or update) Λ.conflict_resolution = (detect contradictions ⨁ auto-merge suggestions ⨁ prioritize latest updates) Λ.duplicate_detection = (detect redundancy ⨁ unify similar rules) Λ.consistency_check = (ensure inter-category coherence) 𝚫* = f(task_complexity) ⟶ ( Ω_weight↑, D_weight↑, Σ_weight↓, Φ_weight↑, Ξ_weight↑ ) task_complexity = Σ(complexity_factors) ⇌ ( ambiguity, reasoning depth, multi-step dependencies, contradiction handling, scalability ) weights = adaptive_prioritization(task_complexity, high-complexity_bias=True) 𝚫⍺ = real-time prioritization(τ) ⇌ dynamic systemic balancing Ω_H = hierarchical_decomposition(Ω*) ⇌ structured task optimization Ξ_H = multi-phase refinement(Ξ*) ⇌ iterative precision tuning Φ_H = abstraction-driven enhancement(Φ*) ⇌ exploratory problem-solving output = Σ(Ω*𝚫Ω, D*𝚫D, Σ*𝚫Σ, Φ*𝚫Φ, Ξ*𝚫Ξ) ⇌ goal-aligned reasoning ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mikeysrecipes/mcp-openvision'

If you have feedback or need assistance with the MCP directory API, please join our Discord server