Skip to main content
Glama
test_grok_debugging.py1.52 kB
"""Tests for Grok configuration normalization and diagnostics.""" import json import pytest from mcp_backend import LLMBackend def _make_backend(grok_overrides=None): config = { "llm": { "default_provider": "grok", "providers": { "grok": { "model": "grok-beta", "base_url": "https://api.x.ai/v1", } }, } } if grok_overrides: config["llm"]["providers"]["grok"].update(grok_overrides) return LLMBackend(config) def test_normalize_upgrades_deprecated_model(): backend = _make_backend() assert backend.config["providers"]["grok"]["model"] == "grok-3" def test_normalize_fills_missing_fields(): backend = _make_backend({"model": None, "base_url": None}) grok_conf = backend.config["providers"]["grok"] assert grok_conf["model"] == "grok-3" assert grok_conf["base_url"] == "https://api.x.ai/v1" def test_diagnose_grok_error_contains_hint(): backend = _make_backend() body = json.dumps({"error": {"message": "Model not found: grok-beta"}}) message = backend._diagnose_grok_error(404, body, "grok-beta", "https://api.x.ai/v1") assert "grok-3" in message def test_extract_message_content_flattens_segments(): backend = _make_backend() response = {"choices": [{"message": {"content": [{"type": "text", "text": "Hello"}]}}]} content = backend._extract_message_content(response, "grok") assert content == "Hello"

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mikeychann-hash/MCPM'

If you have feedback or need assistance with the MCP directory API, please join our Discord server