Skip to main content
Glama

SignNow MCP Server

Official
llamaindex_example.py1.48 kB
import asyncio import os from dotenv import dotenv_values, find_dotenv from llama_index.core.agent.workflow import FunctionAgent from llama_index.llms.openai import OpenAI from llama_index.tools.mcp import BasicMCPClient, McpToolSpec async def main() -> None: # Load environment variables (as in your example) env_path = find_dotenv(usecwd=True) if env_path: os.environ.update(dotenv_values(env_path)) # 1) Start your MCP server as a separate process via STDIO (analog of StdioServerParameters) mcp_client = BasicMCPClient("sn-mcp", args=["serve"]) # reads os.environ # Alternatives (if remote server is needed): # mcp_client = BasicMCPClient("http://host:port/sse") # SSE # mcp_client = BasicMCPClient("https://host/mcp") # Streamable HTTP # 2) Auto-conversion of tools from MCP → FunctionTool (descriptions/JSON schemas will be pulled) spec = McpToolSpec(client=mcp_client, include_resources=False) # allowed_tools=[...] if needed tools = await spec.to_tool_list_async() # 3) LlamaIndex Agent agent = FunctionAgent( name="MCP Agent", description="Agent with tools from sn-mcp", llm=OpenAI(model=os.environ["LLM_MODEL"], api_base=os.environ["LLM_API_HOST"], api_key=os.environ["LLM_KEY"]), tools=tools, system_prompt="Be helpful.", ) resp = await agent.run("Show me list of templates and its names") print(resp) asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mihasicehcek/sn-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server