Skip to main content
Glama
by microsoft
contextual-retreival.genai.mts1.18 kB
script({ system: [], files: ["src/azure-lza/azure-azure-resource-manager-bicep.pdf"], }) const doc = env.files[0] const chunks = splitTextIntoChunks(doc.content, 100) console.log( `Document: ${doc.filename}, ${doc.content.length} characters, ${chunks.length} chunks` ) for (const chunk of chunks) { console.log(`chunk: ${chunk.slice(0, 25) + "..."}`) const res = await runPrompt( (_) => { _.def("DOCUMENT", doc, { maxTokens: 10000 }) $`Here is the chunk we want to situate within the whole document` _.def("CHUNK", chunk) _.$`Please give a short succinct context to situate this chunk within the overall document for the purposes of improving search retrieval of the chunk. Answer only with the succinct context and nothing else. ` }, { cache: "cr" } ) } function splitTextIntoChunks(text: string, chunkSize: number): string[] { const tokens = text.split(/\s+/) // Split text into tokens based on whitespace const chunks = [] for (let i = 0; i < tokens.length; i += chunkSize) { chunks.push(tokens.slice(i, i + chunkSize).join(" ")) } return chunks }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/microsoft/genaiscript'

If you have feedback or need assistance with the MCP directory API, please join our Discord server