Skip to main content
Glama

GenAIScript

Official
by microsoft
MIT License
43
2,820
  • Linux
  • Apple
runtime.ts18.6 kB
/// <reference path="../genaisrc/genaiscript.d.ts" /> /** * GenAIScript supporting runtime * This module provides core functionality for text classification, data transformation, * PDF processing, and file system operations in the GenAIScript environment. */ import { delay, uniq, uniqBy, chunk } from "es-toolkit" import { z } from "zod" /** * Utility functions exported for general use */ export { delay, uniq, uniqBy, z, chunk } /** * Options for classifying data using AI models. * * @property {boolean} [other] - Inject a 'other' label. * @property {boolean} [explanations] - Explain answers before returning token. * @property {ChatGenerationContext} [ctx] - Options runPrompt context. */ export type ClassifyOptions = { /** * When true, adds an 'other' category to handle cases that don't match defined labels */ other?: boolean /** * When true, provides explanatory text before the classification result */ explanations?: boolean /** * Context for running the classification prompt */ ctx?: ChatGenerationContext } & Omit<PromptGeneratorOptions, "choices"> /** * Classifies input text into predefined categories using AI. * Inspired by https://github.com/prefecthq/marvin. * * @param text - Text content to classify or a prompt generator function. * @param labels - Object mapping label names to their descriptions. * @param options - Configuration options for classification, including whether to add an "other" category, provide explanations, and specify context. * @returns Classification result containing the chosen label, confidence metrics, log probabilities, the full answer text, and usage statistics. * @throws Error if fewer than two labels are provided (including "other"). */ export async function classify<L extends Record<string, string>>( text: StringLike | PromptGenerator, labels: L, options?: ClassifyOptions ): Promise<{ label: keyof typeof labels | "other" entropy?: number logprob?: number probPercent?: number answer: string logprobs?: Record<keyof typeof labels | "other", Logprob> usage?: RunPromptUsage }> { const { other, explanations, ...rest } = options || {} const entries = Object.entries({ ...labels, ...(other ? { other: "This label is used when the text does not fit any of the available labels.", } : {}), }).map(([k, v]) => [k.trim().toLowerCase(), v]) if (entries.length < 2) throw Error("classify must have at least two label (including other)") const choices = entries.map(([k]) => k) const allChoices = uniq<keyof typeof labels | "other">(choices) const ctx = options?.ctx || env.generator const res = await ctx.runPrompt( async (_) => { _.$`## Expert Classifier You are a specialized text classification system. Your task is to carefully read and classify any input text or image into one of the predefined labels below. For each label, you will find a short description. Use these descriptions to guide your decision. `.role("system") _.$`## Labels You must classify the data as one of the following labels. ${entries.map(([id, descr]) => `- Label '${id}': ${descr}`).join("\n")} ## Output ${explanations ? "Provide a single short sentence justification for your choice." : ""} Output the label as a single word on the last line (do not emit "Label"). ` _.fence( `- Label 'yes': funny - Label 'no': not funny DATA: Why did the chicken cross the road? Because moo. Output: ${explanations ? "It's a classic joke but the ending does not relate to the start of the joke." : ""} no `, { language: "example" } ) if (typeof text === "function") await text(_) else _.def("DATA", text) }, { model: "classify", choices: choices, label: `classify ${choices.join(", ")}`, logprobs: true, topLogprobs: Math.min(3, choices.length), maxTokens: explanations ? 100 : 1, system: [ "system.output_plaintext", "system.safety_jailbreak", "system.safety_harmful_content", "system.safety_protected_material", ], ...rest, } ) // find the last label const answer = res.text.toLowerCase() const indexes = choices.map((l) => answer.lastIndexOf(l)) const labeli = indexes.reduce((previ, label, i) => { if (indexes[i] > indexes[previ]) return i else return previ }, 0) const label = entries[labeli][0] const logprobs = res.choices ? (Object.fromEntries( res.choices .filter((c) => !isNaN(c?.logprob)) .map((c, i) => [allChoices[i], c]) ) as Record<keyof typeof labels | "other", Logprob>) : undefined const logprob = logprobs?.[label] const usage = res.usage return { label, entropy: logprob?.entropy, logprob: logprob?.logprob, probPercent: logprob?.probPercent, answer, logprobs, usage, } } /** * Enhances content generation by applying iterative improvements. * * @param options - Configuration for the improvement process. * @param options.ctx - Chat generation context to use. Defaults to the environment generator if not provided. * @param options.repeat - Number of improvement iterations to perform. Defaults to 1. * @param options.instructions - Custom instructions for improvement. Defaults to "Make it better!". * The instructions are applied in each iteration. */ export function makeItBetter(options?: { ctx?: ChatGenerationContext repeat?: number instructions?: string }) { const { repeat = 1, instructions = "Make it better!" } = options || {} const ctx = options?.ctx || env.generator let round = 0 ctx.defChatParticipant((cctx) => { if (round++ < repeat) { cctx.console.log(`make it better (round ${round})`) cctx.$`${instructions}` } }) } /** * Converts unstructured text or data into structured JSON format. * Inspired by https://github.com/prefecthq/marvin. * * @param data - Input text or a prompt generator function to convert. * @param itemSchema - JSON schema defining the target data structure. If `multiple` is true, this will be treated as an array schema. * @param options - Configuration options for the conversion process, including context, instructions, label, and additional settings. If `multiple` is true, the schema will be treated as an array schema. * @returns An object containing the converted data, error information if applicable, and the raw text response. */ export async function cast( data: StringLike | PromptGenerator, itemSchema: JSONSchema, options?: PromptGeneratorOptions & { multiple?: boolean instructions?: string | PromptGenerator ctx?: ChatGenerationContext } ): Promise<{ data?: unknown; error?: string; text: string }> { const { ctx = env.generator, multiple, instructions, label = `cast text to schema`, ...rest } = options || {} const responseSchema = multiple ? ({ type: "array", items: itemSchema, } satisfies JSONSchemaArray) : itemSchema const res = await ctx.runPrompt( async (_) => { if (typeof data === "function") await data(_) else _.def("SOURCE", data) _.defSchema("SCHEMA", responseSchema, { format: "json" }) _.$`You are an expert data converter specializing in transforming unstructured text source into structured data. Convert the contents of <SOURCE> to JSON using schema <SCHEMA>. - Treat images as <SOURCE> and convert them to JSON. - Make sure the returned data matches the schema in <SCHEMA>.` if (typeof instructions === "string") _.$`${instructions}` else if (typeof instructions === "function") await instructions(_) }, { responseSchema, ...rest, label, } ) const text = parsers.unfence(res.text, "json") return res.json ? { text, data: res.json } : { text, error: res.error?.message } } /** * Converts a PDF file to markdown format with intelligent formatting preservation. * * @param file - PDF file to convert. * @param options - Configuration options for PDF processing and markdown conversion, including instructions, context, and additional settings. The options can include rendering images, providing custom instructions, and specifying the context for processing. The text and images from the PDF are analyzed to ensure accurate markdown formatting. * @returns An object containing the original pages, rendered images, and markdown content for each page. */ export async function markdownifyPdf( file: WorkspaceFile, options?: PromptGeneratorOptions & Omit<ParsePDFOptions, "renderAsImage"> & { instructions?: string | PromptGenerator ctx?: ChatGenerationContext } ) { const { ctx = env.generator, label = `markdownify PDF`, model = "ocr", responseType = "markdown", systemSafety = true, instructions, ...rest } = options || {} // extract text and render pages as images const { pages, images = [] } = await parsers.PDF(file, { ...rest, renderAsImage: true, }) const markdowns: string[] = [] for (let i = 0; i < pages.length; ++i) { const page = pages[i] const image = images[i] // mix of text and vision const res = await ctx.runPrompt( async (_) => { const previousPages = markdowns.slice(-2).join("\n\n") if (previousPages.length) _.def("PREVIOUS_PAGES", previousPages) if (page) _.def("PAGE", page) if (image) _.defImages(image, { autoCrop: true, greyscale: true }) _.$`You are an expert at converting PDFs to markdown. ## Task Your task is to analyze the image and extract textual content in markdown format. The image is a screenshot of the current page in the PDF document. We used pdfjs-dist to extract the text of the current page in <PAGE>, use it to help with the conversion. The text from the previous pages is in <PREVIOUS_PAGES>, use it to ensure consistency in the conversion. ## Instructions - Ensure markdown text formatting for the extracted text is applied properly by analyzing the image. - Do not change any content in the original extracted text while applying markdown formatting and do not repeat the extracted text. - Preserve markdown text formatting if present such as horizontal lines, header levels, footers, bullet points, links/urls, or other markdown elements. - Extract source code snippets in code fences. - Do not omit any textual content from the markdown formatted extracted text. - Do not generate page breaks - Do not repeat the <PREVIOUS_PAGES> content. - Do not include any additional explanations or comments in the markdown formatted extracted text. ` if (image) $`- For images, generate a short alt-text description.` if (typeof instructions === "string") _.$`${instructions}` else if (typeof instructions === "function") await instructions(_) }, { ...rest, model, label: `${label}: page ${i + 1}`, responseType, system: ["system", "system.assistant"], } ) if (res.error) throw new Error(res.error?.message) markdowns.push(res.text) } return { pages, images, markdowns } } /** * Creates a tree representation of files in the workspace. * * @param glob - Glob pattern to match files. * @param options - Configuration options for tree generation. * @param options.query - Optional search query to filter files. * @param options.size - Whether to include file sizes in the output. * @param options.ignore - Patterns to exclude from the results. * @param options.frontmatter - Frontmatter fields to extract from markdown files. Only applies to markdown files. * @param options.preview - Custom function to generate file previews based on file and stats. * @returns A formatted string representing the file tree structure, including metadata and file sizes if specified. */ export async function fileTree( glob: string, options?: WorkspaceGrepOptions & { query?: string | RegExp size?: boolean ignore?: ElementOrArray<string> frontmatter?: OptionsOrString< "title" | "description" | "keywords" | "tags" >[] preview?: (file: WorkspaceFile, stats: FileStats) => Awaitable<unknown> } ): Promise<string> { const { frontmatter, preview, query, size, ignore, ...rest } = options || {} const readText = !!(frontmatter || preview) // TODO const files = query ? (await workspace.grep(query, glob, { ...rest, readText })).files : await workspace.findFiles(glob, { ignore, readText, }) const tree = await buildTree(files) return renderTree(tree) type TreeNode = { filename: string children?: TreeNode[] stats: FileStats metadata: string } async function buildTree(files: WorkspaceFile[]): Promise<TreeNode[]> { const root: TreeNode[] = [] for (const file of files) { const { filename } = file const parts = filename.split(/[/\\]/) let currentLevel = root for (let index = 0; index < parts.length; index++) { const part = parts[index] let node = currentLevel.find((n) => n.filename === part) if (!node) { const stats = await workspace.stat(filename) let metadata: unknown[] = [] if (frontmatter && /\.mdx?$/i.test(filename)) { const fm = parsers.frontmatter(file) || {} if (fm) metadata.push( ...frontmatter .map((field) => [field, fm[field]]) .filter(([_, v]) => v !== undefined) .map( ([k, v]) => `${k}: ${JSON.stringify(v)}` ) ) } if (preview) metadata.push(await preview(file, stats)) node = { filename: part, metadata: metadata .filter((f) => f !== undefined) .map((s) => String(s)) .map((s) => s.replace(/\n/g, " ")) .join(", "), stats, } currentLevel.push(node) } if (index < parts.length - 1) { if (!node.children) { node.children = [] } currentLevel = node.children } } } return root } function renderTree(nodes: TreeNode[], prefix = ""): string { return nodes .map((node, index) => { const isLast = index === nodes.length - 1 const newPrefix = prefix + (isLast ? " " : "│ ") const children = node.children?.length ? renderTree(node.children, newPrefix) : "" const meta = [ size ? `${Math.ceil(node.stats.size / 1000)}kb ` : undefined, node.metadata, ] .filter((s) => !!s) .join(", ") return `${prefix}${isLast ? "└ " : "├ "}${node.filename}${meta ? ` - ${meta}` : ""}\n${children}` }) .join("") } } /** * Injects @mozilla/readability into a page to extract structured data from an article. * This function evaluates the page content using the Readability library to parse and extract details such as title, content, text, and metadata. * * @param page - The browser page instance to evaluate and extract content from. * @returns An object containing the parsed article details, including title, content, text content, length, excerpt, byline, direction, site name, language, and published time, or null if parsing fails. * @see https://github.com/mishushakov/llm-scraper/ */ export async function parseReadableContent<T = string>( page: BrowserPage ): Promise<null | { /** article title */ title: string | null | undefined /** HTML string of processed article content */ content: T | null | undefined /** text content of the article, with all the HTML tags removed */ textContent: string | null | undefined /** length of an article, in characters */ length: number | null | undefined /** article description, or short excerpt from the content */ excerpt: string | null | undefined /** author metadata */ byline: string | null | undefined /** content direction */ dir: string | null | undefined /** name of the site */ siteName: string | null | undefined /** content language */ lang: string | null | undefined /** published time */ publishedTime: string | null | undefined }> { const results = await page.evaluate(async () => { const readability = await import( // @ts-ignore "https://cdn.skypack.dev/@mozilla/readability" ) const doc = document.cloneNode(true) return new readability.Readability(doc).parse() }) return results }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/microsoft/genaiscript'

If you have feedback or need assistance with the MCP directory API, please join our Discord server