Skip to main content
Glama

MeshAI MCP Server

Build Status Docker Image PyPI version Python 3.8+

A standalone Model Context Protocol (MCP) server that enables Claude Code and other MCP-compatible tools to leverage MeshAI's multi-agent orchestration capabilities.

πŸš€ Features

  • πŸ€– Multi-Agent Workflows: 6 pre-configured workflows for code review, refactoring, debugging, documentation, and more

  • 🧠 Intelligent Agent Selection: Automatically selects appropriate AI agents based on task content

  • πŸ”§ Framework Agnostic: Works with agents built on LangChain, CrewAI, AutoGen, and other frameworks

  • πŸ‹ Docker Ready: Full Docker support with development and production configurations

  • πŸ“¦ Easy Installation: Available as PyPI package or Docker container

  • πŸ”„ Fallback Protocol: Works without official MCP package using built-in implementation

πŸ“‹ Quick Start

Option 1: Docker with stdio (Claude Code)

# Run with Docker for Claude Code integration docker run -it \ -e MESHAI_API_URL=http://localhost:8080 \ -e MESHAI_API_KEY=your-api-key \ ghcr.io/meshailabs/meshai-mcp-server:latest # Or with docker-compose git clone https://github.com/meshailabs/meshai-mcp.git cd meshai-mcp cp .env.template .env # Edit with your settings docker-compose up

Option 2: HTTP Server Mode

# Run as HTTP API server docker run -p 8080:8080 \ -e MESHAI_API_URL=http://localhost:8080 \ ghcr.io/meshailabs/meshai-mcp-server:latest \ meshai-mcp-server serve --transport http # Test the HTTP API curl -H "Authorization: Bearer dev_your-api-key" \ http://localhost:8080/v1/tools

Option 3: PyPI Installation

# Install from PyPI pip install meshai-mcp-server # Run in stdio mode (for Claude Code) export MESHAI_API_URL=http://localhost:8080 export MESHAI_API_KEY=your-api-key meshai-mcp-server # Or run as HTTP server meshai-mcp-server serve --transport http --port 8080

Option 4: Development Setup

# Clone and install git clone https://github.com/meshailabs/meshai-mcp.git cd meshai-mcp pip install -e ".[dev]" # Run in development mode python -m meshai_mcp.cli serve --dev --transport http

πŸ”§ Configuration

Environment Variables

Variable

Description

Default

Required

MESHAI_API_URL

MeshAI API endpoint

http://localhost:8080

Yes

MESHAI_API_KEY

API key for authentication

None

For stdio mode

MESHAI_LOG_LEVEL

Logging level

INFO

No

πŸ” Authentication

For HTTP Mode:

  • API Key Required: Pass via Authorization: Bearer YOUR_API_KEY header

  • Development Keys: Use dev_ prefix for testing (e.g., dev_test123)

  • Rate Limiting: 100 requests/hour for development, configurable for production

For stdio Mode:

  • Environment Variable: Set MESHAI_API_KEY for backend communication

  • No HTTP Auth: Authentication handled by Claude Code

Claude Code Integration

stdio Transport (Recommended):

{ "servers": { "meshai": { "command": "docker", "args": [ "run", "--rm", "-i", "-e", "MESHAI_API_URL=${MESHAI_API_URL}", "-e", "MESHAI_API_KEY=${MESHAI_API_KEY}", "ghcr.io/meshailabs/meshai-mcp-server:latest" ], "transport": "stdio" } } }

HTTP Transport (For hosted deployments):

{ "servers": { "meshai": { "command": "curl", "args": [ "-X", "POST", "-H", "Authorization: Bearer ${MESHAI_MCP_API_KEY}", "-H", "Content-Type: application/json", "-d", "@-", "https://your-mcp-server.com/v1/mcp" ], "transport": "http" } } }

Local pip Installation:

{ "servers": { "meshai": { "command": "meshai-mcp-server", "transport": "stdio", "env": { "MESHAI_API_URL": "${MESHAI_API_URL}", "MESHAI_API_KEY": "${MESHAI_API_KEY}" } } } }

πŸ› οΈ Available Workflows

1. Code Review (mesh_code_review)

Comprehensive code review with security and best practices analysis.

  • Agents: code-reviewer, security-analyzer, best-practices-advisor

2. Refactor & Optimize (mesh_refactor_optimize)

Refactor code with performance optimization and test generation.

  • Agents: code-optimizer, performance-analyzer, test-generator

3. Debug & Fix (mesh_debug_fix)

Debug issues and generate tests for fixes.

  • Agents: debugger-expert, log-analyzer, test-generator

4. Document & Explain (mesh_document_explain)

Generate documentation and explanations with examples.

  • Agents: doc-writer, code-explainer, example-generator

5. Architecture Review (mesh_architecture_review)

Comprehensive architecture analysis and recommendations.

  • Agents: system-architect, performance-analyst, security-auditor

6. Feature Development (mesh_feature_development)

End-to-end feature development from design to testing.

  • Agents: product-designer, senior-developer, test-engineer, doc-writer

🌐 HTTP API Usage

Starting HTTP Server

# Using Docker docker run -p 8080:8080 \ -e MESHAI_API_URL=http://localhost:8080 \ ghcr.io/meshailabs/meshai-mcp-server:latest \ meshai-mcp-server serve --transport http # Using pip meshai-mcp-server serve --transport http --port 8080

API Endpoints

Endpoint

Method

Description

Auth Required

/health

GET

Health check

No

/v1/tools

GET

List available tools

Yes

/v1/workflows

GET

List workflows

Yes

/v1/resources

GET

List resources

Yes

/v1/mcp

POST

Execute MCP request

Yes

/v1/stats

GET

Usage statistics

Yes

/docs

GET

API documentation

No

Usage Examples

# Health check (no auth required) curl http://localhost:8080/health # List available tools curl -H "Authorization: Bearer dev_test123" \ http://localhost:8080/v1/tools # Execute a workflow curl -X POST \ -H "Authorization: Bearer dev_test123" \ -H "Content-Type: application/json" \ -d '{"method":"mesh_code_review","id":"test","params":{"files":"app.py"}}' \ http://localhost:8080/v1/mcp # Get usage stats curl -H "Authorization: Bearer dev_test123" \ http://localhost:8080/v1/stats

πŸ‹ Docker Deployment

Development Setup

# Development with hot reload docker-compose -f docker-compose.dev.yml up # Run tests docker-compose -f docker-compose.dev.yml run --rm mcp-tests # With mock API docker-compose -f docker-compose.dev.yml --profile mock up

Production Considerations

For production deployment:

  • Use proper API key management

  • Set up rate limiting and monitoring

  • Configure HTTPS/TLS termination

  • Implement proper logging and metrics

  • Consider using a reverse proxy (nginx, Traefik)

  • Set resource limits and scaling policies

πŸ§ͺ Development

Setup Development Environment

# Clone repository git clone https://github.com/meshailabs/meshai-mcp.git cd meshai-mcp # Install in development mode pip install -e ".[dev]" # Install pre-commit hooks pre-commit install # Run tests pytest tests/ -v # Run with coverage pytest tests/ -v --cov=src/meshai_mcp --cov-report=html

Code Quality

# Format code black src tests isort src tests # Type checking mypy src/meshai_mcp # Linting flake8 src tests

Building Docker Images

# Build production image docker build -t meshai-mcp-server . # Build development image docker build -f Dockerfile.dev --target development -t meshai-mcp-server:dev . # Multi-architecture build docker buildx build --platform linux/amd64,linux/arm64 -t meshai-mcp-server:multi .

πŸ“š Documentation

🀝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Workflow

  1. Fork the repository

  2. Create a feature branch

  3. Make your changes

  4. Add tests for new functionality

  5. Run the test suite

  6. Submit a pull request

πŸ“ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ†˜ Support

πŸ—ΊοΈ Roadmap

  • HTTP transport support for MCP

  • WebSocket transport for real-time communication

  • Custom workflow configuration via YAML

  • Plugin system for custom agents

  • Prometheus metrics integration

  • Official MCP package integration when available


Built with ❀️ by the MeshAI Labs team.

-
security - not tested
-
license - not tested
-
quality - not tested

Related MCP Servers

  • -
    security
    -
    license
    -
    quality
    Facilitates integration with Claude Desktop to run AI agents and execute purchased actions without code, leveraging the Model Context Protocol framework.
  • A
    security
    F
    license
    A
    quality
    A Model Context Protocol server that enables Claude users to access specialized OpenAI agents (web search, file search, computer actions) and a multi-agent orchestrator through the MCP protocol.
    Last updated -
    4
    10
    • Linux
    • Apple
  • A
    security
    A
    license
    A
    quality
    An AI-powered Model Context Protocol server for Claude Code that provides code intelligence tools including codebase analysis, task management, component generation, and deployment configuration.
    Last updated -
    23
    14
    GPL 3.0
  • A
    security
    A
    license
    A
    quality
    Connects Blender to Claude AI through the Model Context Protocol, enabling AI-assisted 3D modeling, scene creation, and manipulation through natural language commands.
    Last updated -
    17
    MIT License
    • Apple
    • Linux

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/meshailabs-org/meshai-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server