Skip to main content
Glama
mdz-axo

PT-MCP (Paul Test Man Context Protocol)

by mdz-axo
KNOWLEDGE_GRAPH_INTEGRATION.md6.62 kB
# Knowledge Graph Integration Plan for PT-MCP > **"Where am I now?"** - Semantic context through integrated knowledge graphs ## Vision PT-MCP will provide not just code structure, but **semantic meaning** by integrating: - **YAGO 4.5**: Base knowledge graph with entities, relationships, and facts - **Schema.org**: Domain-specific schemas for semantic typing ## The Paul Test Man Analogy Just as Paul Test Man mapped signal coverage to ensure "Can you hear me now?", PT-MCP maps semantic meaning to answer "Where am I now?" - providing AI assistants with rich contextual understanding beyond syntax. ## Integration Architecture (Preliminary) ### Phase 1: Core Infrastructure ``` PT-MCP Server ↓ Context Analyzer (existing) ↓ Semantic Enricher (new) ├── YAGO Query Service │ └── Entity Resolver │ └── Relationship Mapper │ └── Fact Retriever └── Schema.org Mapper └── Type Classifier └── Property Extractor └── Vocabulary Builder ``` ### Phase 2: Knowledge Graph Integration #### YAGO 4.5 Integration **Purpose**: Provide base knowledge graph segments relevant to code context **Approach Options** (to be decided after research): 1. **Remote Query**: SPARQL endpoint queries 2. **Local Subset**: Download relevant domain data 3. **Hybrid**: Local cache + remote fallback 4. **Embedded Triple Store**: Run local RDF database **Expected Capabilities**: - Entity recognition (e.g., "React" → framework entity) - Relationship extraction (e.g., "uses TypeScript" → hasLanguage) - Fact retrieval (e.g., "created by Facebook in 2013") - Concept linking (e.g., "REST API" → HTTP methods → status codes) #### Schema.org Integration **Purpose**: Provide domain-specific knowledge graphs **Domain Mapping**: ```typescript CodebaseType → Schema.org Type ├── Web Application → WebApplication ├── API Server → WebAPI / APIReference ├── Mobile App → MobileApplication ├── Library/Package → SoftwareLibrary ├── Database Schema → Dataset ├── Documentation → TechArticle / HowTo └── Test Suite → SoftwareTest (if available) ``` **Property Mapping**: - `dependencies` → schema:softwareRequirements - `version` → schema:softwareVersion - `authors` → schema:author - `license` → schema:license - `description` → schema:description ### Phase 3: Context Enhancement #### New MCP Tool: `enrich_context` ```typescript { path: string; analysis_result: any; // from analyze_codebase enrichment_level: 'minimal' | 'standard' | 'comprehensive'; include_yago: boolean; include_schema: boolean; } ``` **Returns**: ```typescript { codebase_context: {...}, // existing analysis knowledge_graph: { yago_entities: [ { entity: "React", type: "SoftwareFramework", relationships: [ { predicate: "developedBy", object: "Facebook" }, { predicate: "writtenIn", object: "JavaScript" } ], facts: [...] } ], schema_annotations: { "@context": "https://schema.org", "@type": "WebApplication", "name": "...", "applicationCategory": "DeveloperApplication", "softwareVersion": "1.0.0", "programmingLanguage": ["TypeScript", "JavaScript"] } } } ``` ## Technical Stack (Proposed) ### Dependencies to Add - `rdflib` or `n3` - RDF processing - `jsonld` - JSON-LD parsing for Schema.org - `sparql-http-client` - SPARQL queries (if remote) - `levelgraph` or `quadstore` - Local triple store (if embedded) - TBD based on agent research ### Data Storage - **Option 1**: In-memory cache with TTL - **Option 2**: Local RDF database (LevelGraph, RDFStore) - **Option 3**: File-based cache (JSON-LD files) - **Option 4**: Hybrid (memory + disk) ### Query Strategy - **Entity Linking**: Match code entities to knowledge graph entities - **Context Window**: Retrieve relevant subgraph within N hops - **Relevance Scoring**: Rank entities by contextual relevance - **Caching**: Cache frequent queries to reduce latency ## Use Cases ### Use Case 1: Framework Recognition ``` Input: analyze_codebase finds "React" and "Next.js" Enhanced Output: - YAGO: React (JavaScript library, created 2013, by Facebook) - YAGO: Next.js (React framework, created by Vercel) - Schema: WebApplication with SoftwareFramework annotations ``` ### Use Case 2: API Documentation ``` Input: analyze_codebase finds REST API with Express Enhanced Output: - YAGO: REST (architectural style), HTTP (protocol) - Schema: WebAPI type with APIReference properties - Relationships: usesProtocol → HTTP, hasEndpoint → [...] ``` ### Use Case 3: Database Context ``` Input: analyze_codebase finds PostgreSQL usage Enhanced Output: - YAGO: PostgreSQL (RDBMS, SQL dialect, ACID compliant) - Schema: Dataset type with database properties - Facts: Version requirements, performance characteristics ``` ## Success Metrics 1. **Accuracy**: >90% correct entity linking 2. **Relevance**: >80% of returned KG segments are contextually useful 3. **Performance**: <2s latency for knowledge graph enrichment 4. **Coverage**: Support for 50+ programming languages/frameworks initially ## Open Questions (To Be Answered by Research) 1. **YAGO Access**: - What's the current YAGO 4.5 access method? - Do they have a programming domain subset? - What's the query performance? 2. **Schema.org**: - Are there software engineering extensions? - How to validate and infer types? - What's the best JSON-LD library? 3. **W3C Standards**: - Which RDF format is optimal? - SPARQL vs. GraphQL vs. REST? - Best practices for embedded vs. remote? 4. **Serena Patterns**: - Does Serena use any semantic web tech? - What patterns can we reuse? - Any performance lessons learned? ## Next Steps 1. ✅ Launch research agents (4 agents in parallel) 2. ⏳ Wait for research results 3. 📋 Create detailed technical specification 4. 📋 Implement proof-of-concept for YAGO integration 5. 📋 Implement Schema.org annotation system 6. 📋 Add `enrich_context` MCP tool 7. 📋 Write comprehensive tests 8. 📋 Optimize for performance 9. 📋 Document usage patterns --- **Status**: Research phase in progress **Agents Running**: 4 (YAGO, Schema.org, Serena, W3C) **Next Update**: After agent research completes

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mdz-axo/pt-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server