Skip to main content
Glama
analyze_response.py6.26 kB
""" 市场分析接口的响应模型定义 """ from typing import Optional, Dict, Any from pydantic import BaseModel, Field class MarketOpportunityScore(BaseModel): """市场机会评分""" overall_score: float = Field( ..., ge=0, le=100, description="综合评分 (0-100分)。" "整合所有外部市场指标计算得出,分数越高表示市场机会越好" ) market_size_score: float = Field(..., ge=0, le=100, description="市场规模得分") growth_potential_score: float = Field(..., ge=0, le=100, description="增长潜力得分") competition_intensity_score: float = Field(..., ge=0, le=100, description="竞争强度得分 (分数越高表示竞争越小)") market_sentiment_score: float = Field(..., ge=0, le=100, description="市场情绪得分") level: str = Field( ..., description="机会等级: 'excellent' (优秀, 80+), 'good' (良好, 60-80), " "'medium' (中等, 40-60), 'poor' (较差, <40)" ) summary: str = Field(..., description="评分总结说明") class OperationalCapabilityScore(BaseModel): """运营能力评分""" overall_score: float = Field( ..., ge=0, le=100, description="综合评分 (0-100分)。" "整合所有内部运营指标计算得出,分数越高表示运营能力越强" ) growth_momentum_score: float = Field(..., ge=0, le=100, description="增长势能得分") user_quality_score: float = Field(..., ge=0, le=100, description="用户质量得分") cost_efficiency_score: float = Field(..., ge=0, le=100, description="成本效率得分") product_quality_score: float = Field(..., ge=0, le=100, description="产品质量得分") infrastructure_score: float = Field(..., ge=0, le=100, description="基础设施得分") level: str = Field( ..., description="能力等级: 'strong' (强, 80+), 'good' (良好, 60-80), " "'medium' (中等, 40-60), 'weak' (弱, <40)" ) summary: str = Field(..., description="评分总结说明") class RecommendationItem(BaseModel): """单条建议""" priority: str = Field(..., description="优先级: 'high', 'medium', 'low'") category: str = Field(..., description="建议类别: '市场策略', '运营优化', '产品改进' 等") title: str = Field(..., description="建议标题") description: str = Field(..., description="详细说明") expected_impact: str = Field(..., description="预期影响") class AnalyzeResponse(BaseModel): """ 市场分析响应模型 返回详细的市场机会评估、运营能力评估和战略建议 """ # 基本信息 product_name: Optional[str] = Field(None, description="产品名称") analysis_timestamp: str = Field(..., description="分析时间戳 (ISO 8601格式)") # 核心评分 market_opportunity: MarketOpportunityScore = Field(..., description="市场机会评分") operational_capability: OperationalCapabilityScore = Field(..., description="运营能力评分") # 综合评估 comprehensive_score: float = Field( ..., ge=0, le=100, description="综合评分 (0-100分)。" "市场机会和运营能力的加权平均,反映整体可行性" ) feasibility_level: str = Field( ..., description="可行性等级: 'highly_recommended' (强烈推荐), 'recommended' (推荐), " "'conditional' (有条件可行), 'not_recommended' (不推荐)" ) # 战略建议 recommendations: list[RecommendationItem] = Field( ..., description="战略建议列表,按优先级排序" ) # 风险提示 risk_warnings: list[str] = Field( default_factory=list, description="主要风险警示" ) # 关键指标洞察 key_insights: Dict[str, Any] = Field( default_factory=dict, description="关键指标的深度洞察,包括异常值、趋势分析等" ) class Config: json_schema_extra = { "example": { "product_name": "便携式充电桩", "analysis_timestamp": "2025-11-09T10:30:00Z", "market_opportunity": { "overall_score": 78.5, "market_size_score": 85, "growth_potential_score": 82, "competition_intensity_score": 65, "market_sentiment_score": 82, "level": "good", "summary": "市场规模充足,增长潜力大,但竞争较为激烈" }, "operational_capability": { "overall_score": 68.2, "growth_momentum_score": 75, "user_quality_score": 60, "cost_efficiency_score": 55, "product_quality_score": 73, "infrastructure_score": 78, "level": "good", "summary": "运营基础较好,但在用户留存和成本控制方面有提升空间" }, "comprehensive_score": 73.4, "feasibility_level": "recommended", "recommendations": [ { "priority": "high", "category": "运营优化", "title": "提升用户留存率", "description": "当前7日留存率35%低于行业平均水平,建议优化用户体验和增值服务", "expected_impact": "预计可提升留存率至45%+,带来GMV增长15%" } ], "risk_warnings": [ "市场竞争激烈,需要明确差异化定位", "获客成本较高,需要优化营销ROI" ], "key_insights": { "market_trend": "行业处于快速增长期,90天趋势呈上升态势", "competitive_landscape": "中等集中度市场,仍有机会突围" } } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mcp-service/media-crawler-mcp-service'

If you have feedback or need assistance with the MCP directory API, please join our Discord server