example.ipynb•4.07 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from vizro_ai import VizroAI\n",
"\n",
"llm = None\n",
"# uncomment below to try out different models\n",
"# llm = \"gpt-4o\"\n",
"# llm = \"claude-3-5-sonnet-latest\"\n",
"# llm = \"mistral-large-latest\"\n",
"\n",
"# llm = \"grok-beta\" #xAI API is compatible with OpenAI. To use grok-beta,\n",
"# point `OPENAI_BASE_URL` to the xAI baseurl, use xAI API key for `OPENAI_API_KEY`\n",
"# when setting up the environment variables\n",
"# e.g.\n",
"# OPENAI_BASE_URL=\"https://api.x.ai/v1\"\n",
"# OPENAI_API_KEY=<xAI API key>\n",
"# reference: https://docs.x.ai/api/integrations#openai-sdk\n",
"\n",
"# from langchain_openai import ChatOpenAI\n",
"# llm = ChatOpenAI(\n",
"# model=\"gpt-4o\")\n",
"\n",
"\n",
"# import os\n",
"# from langchain_anthropic import ChatAnthropic\n",
"# llm = ChatAnthropic(\n",
"# model=\"claude-3-5-sonnet-latest\",\n",
"# # api_key = os.environ.get(\"ANTHROPIC_API_KEY\"),\n",
"# # base_url= os.environ.get(\"ANTHROPIC_API_BASE\")\n",
"# )\n",
"\n",
"# import os\n",
"# from langchain_openai import AzureChatOpenAI\n",
"# llm = AzureChatOpenAI(\n",
"# azure_deployment=\"gpt-4-1106-preview\",\n",
"# api_version=\"2024-04-01-preview\",\n",
"# temperature=0.4,\n",
"# azure_endpoint=os.environ[\"AZURE_OPENAI_ENDPOINT\"],\n",
"# api_key=os.environ[\"AZURE_OPENAI_API_KEY\"]\n",
"# )\n",
"\n",
"# import os\n",
"# from langchain_mistralai import ChatMistralAI\n",
"# llm = ChatMistralAI(\n",
"# # name=\"mistral-large-latest\",\n",
"# name = \"open-mistral-nemo\",\n",
"# temperature=0,\n",
"# max_retries=2,\n",
"# endpoint= os.environ.get(\"MISTRAL_BASE_URL\"),\n",
"# mistral_api_key = os.environ.get(\"MISTRAL_API_KEY\")\n",
"# )\n",
"\n",
"# import os\n",
"# from langchain_google_genai import ChatGoogleGenerativeAI\n",
"# llm = ChatGoogleGenerativeAI(\n",
"# model=\"gemini-1.5-flash-latest\",\n",
"# # model=\"gemini-1.5-pro-latest\",\n",
"# google_api_key=os.environ.get(\"GOOGLE_API_KEY\"),\n",
"# temperature=0,\n",
"# )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vizro_ai = VizroAI(model=llm)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import vizro.plotly.express as px\n",
"\n",
"df = px.data.gapminder()\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"vizro_ai.plot(df, \"the trend of gdp over years in the US\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vizro_ai.plot(df, \"describe the composition of gdp in continent, and add horizontal line for avg gdp\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vizro_ai.plot(df, \"show me the geo distribution of life expectancy and set year as animation \")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}