Skip to main content
Glama
by mckinsey
vizro-ai-langchain-guide.md6.12 kB
# Using Vizro-AI methods as LangChain tools You can use Vizro-AI's functionality within a larger LangChain application. This guide shows how to integrate Vizro-AI's chart and dashboard generation capabilities as LangChain tools. Here are the steps you need to take: 1. [Set up the environment](#1-set-up-the-environment) 1. [Define LangChain tools](#2-define-langchain-tools) 1. [Set up the tool chain](#3-set-up-the-tool-chain) 1. [Use the chain](#4-use-the-chain) ## 1. Set up the environment First, import the required libraries and prepare the LLM: ```python from copy import deepcopy from typing import Annotated, Any import pandas as pd import vizro.plotly.express as px from langchain_core.runnables import chain from langchain_core.tools import InjectedToolArg, tool from langchain_openai import ChatOpenAI from vizro_ai import VizroAI llm = ChatOpenAI(model="gpt-4") ``` ## 2. Define LangChain tools Basic tools only take string as input and output. Vizro-AI takes Pandas DataFrames as input and it's neither cost-efficient nor secure to pass the full data to a LLM. The recommended approach is to exclude DataFrame parameters from the tool's schema and instead bind them at runtime using [LangChain's runtime binding feature](https://python.langchain.com/v0.2/docs/how_to/tool_runtime/). Now, create tools that wrap Vizro-AI's plotting and dashboard generation capabilities: ```python @tool(parse_docstring=True) def get_plot_code(df: Annotated[Any, InjectedToolArg], question: str) -> str: """Generate only the plot code. Args: df: A pandas DataFrame question: The plotting question Returns: Generated plot code """ vizro_ai = VizroAI(model=llm) plot_elements = vizro_ai.plot( df, user_input=question, return_elements=True, ) return plot_elements.code_vizro @tool(parse_docstring=True) def get_dashboard_code(dfs: Annotated[Any, InjectedToolArg], question: str) -> str: """Generate the dashboard code. Args: dfs: Pandas DataFrames question: The dashboard question Returns: Generated dashboard code """ vizro_ai = VizroAI(model=llm) dashboard_elements = vizro_ai.dashboard( dfs, user_input=question, return_elements=True, ) return dashboard_elements.code ``` ## 3. Set up the tool chain Create a chain that handles tool execution and data injection: ```python # Bind tools to the LLM tools = [get_plot_code, get_dashboard_code] llm_with_tools = llm.bind_tools(tools) # Create data injection chain @chain def inject_df(ai_msg): tool_calls = [] for tool_call in ai_msg.tool_calls: tool_call_copy = deepcopy(tool_call) if tool_call_copy["name"] == "get_dashboard_code": tool_call_copy["args"]["dfs"] = dfs else: tool_call_copy["args"]["df"] = df tool_calls.append(tool_call_copy) return tool_calls # Create tool router tool_map = {tool.name: tool for tool in tools} @chain def tool_router(tool_call): return tool_map[tool_call["name"]] # Combine chains chain = llm_with_tools | inject_df | tool_router.map() ``` ## 4. Use the chain Now you can use the chain to generate charts or dashboards based on natural language queries. The chain will generate code that you can use to create visualizations. !!! example "Generate chart code" === "Code" ```python # Load sample data df = px.data.gapminder() plot_response = chain.invoke("Plot GDP per capita for each continent") print(plot_response[0].content) ``` === "Vizro-AI Generated Code" ```python import plotly.graph_objects as go from vizro.models.types import capture @capture("graph") def custom_chart(data_frame): continent_gdp = data_frame.groupby("continent")["gdpPercap"].mean().reset_index() fig = go.Figure(data=[go.Bar(x=continent_gdp["continent"], y=continent_gdp["gdpPercap"])]) fig.update_layout( title="GDP per Capita by Continent", xaxis_title="Continent", yaxis_title="GDP per Capita", ) return fig ``` !!! example "Generate dashboard code" === "Code" ```python dfs = [px.data.gapminder()] dashboard_response = chain.invoke( "Create a dashboard. This dashboard has a chart showing the correlation between gdpPercap and lifeExp." ) print(dashboard_response[0].content) ``` === "Vizro-AI Generated Code" ```python ############ Imports ############## import vizro.models as vm from vizro.models.types import capture import plotly.graph_objects as go ####### Function definitions ###### @capture("graph") def gdp_life_exp_graph(data_frame): fig = go.Figure() fig.add_trace(go.Scatter(x=data_frame["gdpPercap"], y=data_frame["lifeExp"], mode="markers")) fig.update_layout( title="GDP per Capita vs Life Expectancy", xaxis_title="GDP per Capita", yaxis_title="Life Expectancy", ) return fig ####### Data Manager Settings ##### #######!!! UNCOMMENT BELOW !!!##### # from vizro.managers import data_manager # data_manager["gdp_life_exp"] = ===> Fill in here <=== ########### Model code ############ model = vm.Dashboard( pages=[ vm.Page( components=[ vm.Graph( id="gdp_life_exp_graph", figure=gdp_life_exp_graph(data_frame="gdp_life_exp"), ) ], title="GDP vs Life Expectancy Correlation", layout=vm.Layout(grid=[[0]]), controls=[], ) ], title="GDP per Capita vs Life Expectancy", ) ```

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mckinsey/vizro'

If you have feedback or need assistance with the MCP directory API, please join our Discord server